scholarly journals Ice-Associated Amphipods in a Pan-Arctic Scenario of Declining Sea Ice

2021 ◽  
Vol 8 ◽  
Author(s):  
Haakon Hop ◽  
Mikko Vihtakari ◽  
Bodil A. Bluhm ◽  
Malin Daase ◽  
Rolf Gradinger ◽  
...  

Sea-ice macrofauna includes ice amphipods and benthic amphipods, as well as mysids. Amphipods are important components of the sympagic food web, which is fuelled by the production of ice algae. Data on the diversity of sea-ice biota have been collected as a part of scientific expeditions over decades, and here we present a pan-Arctic analysis of data on ice-associated amphipods and mysids assimilated over 35 years (1977–2012). The composition of species differed among the 13 locations around the Arctic, with main differences between basins and shelves and also between communities in drift ice and landfast sea ice. The sea ice has been dramatically reduced in extent and thickness during the recorded period, which has resulted in reduced abundance of ice amphipods as well as benthic amphipods in sea ice from the 1980’s to the 2010’s. The decline mainly involved Gammarus wilkitzkii coinciding with the disappearance of much of the multiyear sea ice, which is an important habitat for this long-lived species. Benthic amphipods were most diverse, and also showed a decline over the time-span. They had higher abundance closer to land where they are associated with landfast ice. However, they also occurred in the Central Arctic Ocean, which is likely related to the origin of sea ice over shallow water and subsequent transport in the transpolar ice drift. Recent sampling in the waters east and north of Svalbard has found continued presence of Apherusa glacialis, but almost no G. wilkitzkii. Monitoring by standardized methods is needed to detect further changes in community composition of ice amphipods related to reductions in sea-ice cover and ice type.

2015 ◽  
Vol 12 (3) ◽  
pp. 2897-2945 ◽  
Author(s):  
M. Fernández-Méndez ◽  
C. Katlein ◽  
B. Rabe ◽  
M. Nicolaus ◽  
I. Peeken ◽  
...  

Abstract. The ice-covered Central Arctic Ocean is characterized by low primary productivity due to light and nutrient limitations. The recent reduction in ice cover has the potential to substantially increase phytoplankton primary production, but little is yet known about the fate of the ice-associated primary production and of the nutrient supply with increasing warming. This study presents results from the Central Arctic Ocean collected during summer 2012, when sea-ice reached a minimum extent since the onset of satellite observations. Net primary productivity (NPP) was measured in the water column, sea ice and melt ponds by 14CO2 uptake at different irradiances. Photosynthesis vs. irradiance (PI) curves were established in laboratory experiments and used to upscale measured NPP to the deep Eurasian Basin (north of 78° N) using the irradiance-based Central Arctic Ocean Primary Productivity (CAOPP) model. In addition, new annual production was calculated from the seasonal nutrient drawdown in the mixed layer since last winter. Results show that ice algae can contribute up to 60% to primary production in the Central Arctic at the end of the season. The ice-covered water column has lower NPP rates than open water due to light limitation. As indicated by the nutrient ratios in the euphotic zone, nitrate was limiting primary production in the deep Eurasian Basin close to the Laptev Sea area, while silicate was the main limiting nutrient at the ice margin near the Atlantic inflow. Although sea-ice cover was substantially reduced in 2012, total annual new production in the Eurasian Basin was 17 ± 7 Tg C yr-1, which is within the range of estimates of previous years. However, when adding the contribution by sub-ice algae, the annual production for the deep Eurasian Basin (north of 78° N) could double previous estimates for that area with a surplus of 16 Tg C yr-1. Our data suggest that sub-ice algae are an important component of the ice-covered Central Arctic productivity. It remains an important question if their contribution to productivity is on the rise with thinning ice, or if it will decline due to overall sea-ice retreat and be replaced by phytoplankton.


2013 ◽  
Vol 13 (1) ◽  
pp. 2125-2153
Author(s):  
L. Jakobson ◽  
T. Vihma ◽  
E. Jakobson ◽  
T. Palo ◽  
A. Männik ◽  
...  

Abstract. Low-level jets (LLJ) are important for turbulence in the stably stratified atmospheric boundary layer, but their occurrence, properties, and generation mechanisms in the Arctic are not well known. We analysed LLJs over the central Arctic Ocean in spring and summer 2007 on the bases of data collected in the drifting ice station Tara. Instead of traditional radiosonde soundings, data from tethersonde soundings with a high vertical resolution were used. The Tara results showed a lower occurrence of LLJs (46%) than many previous studies over polar sea ice. Strong jet core winds contributed to growth of the turbulent layer. Complex relationship between the jet core height and the temperature inversion top height were detected: substantial correlation (r = 0.72; p < 0.01) occurred when the jet core was above the turbulent layer, but inside the turbulent layer there was no correlation. The most important forcing mechanism for LLJs was baroclinicity, which was responsible for generation of strong and warm LLJs, which on average occurred at lower altitudes than other jets. Baroclinic jets were mostly associated to transient cyclones instead of the climatological air temperature gradients. Besides baroclinicity, cases related to inertial oscillations, gusts, and fronts were detected. In approximately 50% of the observed LLJs the generation mechanism remained unclear, but in most of these cases the wind speed was strong in the whole vertical profile, the jet core representing only a weak maximum. Further research needs on LLJs in the Arctic include investigation of low-level jet streams and their effects on the sea ice drift and atmospheric moisture transport.


2020 ◽  
Vol 8 ◽  
Author(s):  
Giulia Castellani ◽  
Gaëlle Veyssiere ◽  
Frank Kauker ◽  
Michael Karcher ◽  
Julienne Stroeve ◽  
...  

When the air is very cold, water at the surface of the ocean freezes, forming sea ice. Parts of the Arctic Ocean are covered by sea ice during the entire year. Often, snow falls onto the sea ice. Despite the cold, many plants and animals can live in the Arctic Ocean, some in the water, and some even in the sea ice. Particularly, algae can live in small bubbles in the sea ice. Like other plants, algae need energy to grow. This energy comes from food and sunlight. But how can the sunlight reach these little algae living inside the sea ice? From the sun, the light must pass through the atmosphere, the snow, and finally the sea ice itself. In this article, we describe how ice algae can live in this special environment and we explain what influences how much light reaches the algae to make them grow.


2020 ◽  
Author(s):  
Tian Tian ◽  
Shuting Yang ◽  
Mehdi Pasha Karami ◽  
François Massonnet ◽  
Tim Kruschke ◽  
...  

Abstract. A substantial part of Arctic climate predictability at interannual time scales stems from the knowledge of the initial sea ice conditions. Among all the variables characterizing sea ice, sea ice volume, being a product of sea ice area/concentration (SIC) and thickness (SIT), is the most sensitive parameter for climate change. However, the majority of climate prediction systems are only assimilating the observed SIC due to lack of long-term reliable global observation of SIT. In this study the EC-Earth3 Climate Prediction System with anomaly initialization to ocean, SIC and SIT states is developed. In order to evaluate the benefits of specific initialized variables at regional scales, three sets of retrospective ensemble prediction experiments are performed with different initialization strategies: ocean-only; ocean plus SIC; and ocean plus SIC and SIT initialization. The increased skill from ocean plus SIC initialization is small in most regions, compared to ocean-only initialization. In the marginal ice zone covered by seasonal ice, skills regarding winter SIC are mainly gained from the initial ocean temperature anomalies. Consistent with previous studies, the Arctic sea ice volume anomalies are found to play a dominant role for the prediction skill of September Arctic sea ice extent. Winter preconditioning of SIT for the perennial ice in the central Arctic Ocean results in increased skill of SIC in the adjacent Arctic coastal waters (e.g. the Laptev/East Siberian/Chukchi Seas) for lead time up to a decade. This highlights the importance of initializing SIT for predictions of decadal time scale in regional Arctic sea ice. Our results suggest that as the climate warming continues and the central Arctic Ocean might become seasonal ice free in the future, the controlling mechanism for decadal predictability may thus shift from being the sea ice volume playing the major role to a more ocean-related processes.


2021 ◽  
Author(s):  
Klaus Dethloff ◽  
Wieslaw Maslowski ◽  
Stefan Hendricks ◽  
Younjoo Lee ◽  
Helge F. Goessling ◽  
...  

Abstract. As the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) project went into effect during the winter of 2019/2020, the Arctic Oscillation (AO) has experienced some of the largest shifts from a highly negative index in November 2019 to an extremely positive index during January-February-March (JFM) 2020. Here we analyse the sea ice thickness (SIT) distribution based on CryoSat-2/SMOS satellite data augmented with results from the hindcast simulation by the fully coupled Regional Arctic System Model (RASM) for the time period from November 2019 through March 2020. A notable result of the positive AO phase during JFM 2020 were large SIT anomalies, up to 1.3 m, which emerged in the Barents-Sea (BS), along the northeastern Canadian coast and in parts of the central Arctic Ocean. These anomalies appear to be driven by nonlinear interactions between thermodynamic and dynamic processes. In particular, in the Barents- and Kara Seas (BKS) they are a result of an enhanced ice growth connected with the colder temperature anomalies and the consequence of intensified atmospheric-driven sea ice transport and deformations (i.e. divergence and shear) in this area. Low-pressure anomalies, which developed over the Eastern Arctic during JFM 2020, increased northerly winds from the cold Arctic Ocean to the BS and accelerated the southward drift of the MOSAiC ice floe. The satellite-derived and model-simulated sea ice velocity anomalies, which compared well during JFM 2020, indicate a strong acceleration of the Transpolar Drift relative to the mean for the past decade, with intensified speeds up to 6 km/day. As a consequence, sea ice transport and deformations driven by atmospheric wind forcing accounted for bulk of SIT anomalies, especially in January and February 2020. The unusual AO shift and the related sea ice anomalies during the MOSAiC winter 2019/20 are within the range of simulated states in the forecast ensemble. RASM intra-annual ensemble forecast simulations, forced with different atmospheric boundary conditions from November 1, 2019 through April 30, 2020, show a pronounced internally generated variability in the sea ice volume. A comparison of the respective SIT distribution and turbulent heat fluxes during the positive AO phase in JFM 2020 and the negative AO phase in JFM 2010 further corroborates the conclusion, that winter sea ice conditions of the Arctic Ocean can be significantly altered by AO variability.


2020 ◽  
Author(s):  
Valeria Selyuzhenok ◽  
Denis Demchev ◽  
Thomas Krumpen

&lt;p&gt;Landfast sea ice is a dominant sea ice feature of the Arctic coastal region. As a part of Arctic sea ice cover, landfast ice is an important part of coastal ecosystem, it provides functions as a climate regulator and platform for human activity. Recent changes in sea ice conditions in the Arctic have also affected landfast ice regime. At the same time, industrial interest in the Arctic shelf seas continue to increase. Knowledge on local landfast ice conditions are required to ensure safety of on ice operations and accurate forecasting.&amp;#160; In order to obtain a comprehensive information on landfast ice state we use a time series of wide swath SAR imagery.&amp;#160; An automatic sea ice tracking algorithm was applied to the sequential SAR images during the development stage of landfast ice cover. The analysis of resultant time series of sea ice drift allows to classify homogeneous sea ice drift fields and timing of their attachment to the landfast ice. In addition, the drift data allows to locate areas of formation of grounded sea ice accumulation called stamukha. This information &amp;#1089;an be useful for local landfast ice stability assessment. The study is supported by the Russian Foundation for Basic Research (RFBR) grant 19-35-60033.&lt;/p&gt;


2019 ◽  
Vol 13 (2) ◽  
pp. 557-577 ◽  
Author(s):  
Dyre O. Dammann ◽  
Leif E. B. Eriksson ◽  
Andrew R. Mahoney ◽  
Hajo Eicken ◽  
Franz J. Meyer

Abstract. Arctic landfast sea ice has undergone substantial changes in recent decades, affecting ice stability and including potential impacts on ice travel by coastal populations and on industry ice roads. We present a novel approach for evaluating landfast sea ice stability on a pan-Arctic scale using Synthetic Aperture Radar Interferometry (InSAR). Using Sentinel-1 images from spring 2017, we discriminate between bottomfast, stabilized, and nonstabilized landfast ice over the main marginal seas of the Arctic Ocean (Beaufort, Chukchi, East Siberian, Laptev, and Kara seas). This approach draws on the evaluation of relative changes in interferometric fringe patterns. This first comprehensive assessment of Arctic bottomfast sea ice extent has revealed that most of the bottomfast sea ice is situated around river mouths and coastal shallows. The Laptev and East Siberian seas dominate the aerial extent, covering roughly 4100 and 5100 km2, respectively. These seas also contain the largest extent of stabilized and nonstabilized landfast ice, but are subject to the largest uncertainties surrounding the mapping scheme. Even so, we demonstrate the potential for using InSAR for assessing the stability of landfast ice in several key regions around the Arctic, providing a new understanding of how stability may vary between regions. InSAR-derived stability may serve for strategic planning and tactical decision support for different uses of coastal ice. In a case study of the Nares Strait, we demonstrate that interferograms may reveal early-warning signals for the breakup of stationary sea ice.


2014 ◽  
Vol 8 (1) ◽  
pp. 303-317 ◽  
Author(s):  
A. Kriegsmann ◽  
B. Brümmer

Abstract. This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different sub-regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration in the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the cumulative impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important contributions to the recent ice extent minima in 2007 and 2012.


2013 ◽  
Vol 7 (2) ◽  
pp. 1141-1176 ◽  
Author(s):  
A. Kriegsmann ◽  
B. Brümmer

Abstract. This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration on the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important reasons for the recent ice extent minima in 2007 and 2012.


2019 ◽  
Vol 488 (4) ◽  
pp. 439-442
Author(s):  
V. A. Volkov ◽  
A. V. Mushta ◽  
D. M. Demchev

Based on the 39-year satellite observation data series (1978-2017), three main types of large-scale sea-ice drift field in the Arctic Ocean (AO), characteristic of the winter season, were identified. The types of atmospheric circulation that form the structure of the drift fields are identified, the mechanism of the effect of changes in the drift fields on the interannual variations in the ice cover of the AO is described.


Sign in / Sign up

Export Citation Format

Share Document