scholarly journals Sampling Designs for Monitoring Ichthyoplankton in the Estuary Area: A Case Study on Coilia mystus in the Yangtze Estuary

2022 ◽  
Vol 8 ◽  
Author(s):  
Xiangyu Long ◽  
Rong Wan ◽  
Zengguang Li ◽  
Dong Wang ◽  
Pengbo Song ◽  
...  

A fishery-independent survey can provide detailed information for fishery assessment and management. However, the sampling design for the survey on ichthyoplankton in the estuary area is still poorly understood. In this study, we developed six stratified schemes with various sample sizes, attempting to find cost-efficient sampling designs for monitoring Coilia mystus ichthyoplankton in the Yangtze Estuary. The generalized additive model (GAM) with the Tweedie distribution was used to quantify the “true” distribution of C. mystus eggs and larvae, based on the data from the fishery-independent survey in 2019–2020. The performances of different sampling designs were evaluated by relative estimation error (REE), relative bias (RB), and coefficient of variation (CV). The results indicated that appropriate stratifications with intra-stratum homogeneity and inter-stratum heterogeneity could improve precision. The stratified schemes should be divided not only between the North Branch and South Branch but between river and sea. No less than two stratifications in the South Branch could also get better performance. The sample sizes of 45–55 were considered as the cost-efficient range. Compared to other monitoring programs, monitoring ichthyoplankton in the estuary area required a more complex stratification and a higher resolution sampling. The design ideology and optimization methodology in our study would provide references to sampling designs for ichthyoplankton in the estuary area.

2019 ◽  
Vol 7 (11) ◽  
pp. 390 ◽  
Author(s):  
Dechao Hu ◽  
Min Wang ◽  
Shiming Yao ◽  
Zhongwu Jin

Because of special morphologies and complex runoff–tide interactions, the landward floodtide flows in Yangtze Estuary are observed to spill over from the North to the South Branches, carrying a lot of sediment. To quantitatively clarify the spillover problem, a two-dimensional numerical model using a high-resolution channel-refined unstructured grid is developed for the entire Yangtze Estuary from Datong to river mouths (620 km) and part of the East Sea. The developed model ensures a good description of the river-coast-ocean coupling, the irregular boundaries, and local river regimes in the Yangtze Estuary. In tests, the simulated histories of the tidal level, depth-averaged velocity, and sediment concentration agree well with field data. The spillover of sediment in the Yangtze Estuary is studied using the condition of a spring and a neap tide in dry seasons. For a representative cross-section in the upper reach of the North Branch (QLG), the difference of the cross-sectional sediment flux (CSSF) between floodtide and ebbtide durations is 43.85–11.26 × 104 t/day, accounting for 37.5–34.9% of the landward floodtide CSSF. The mechanics of sediment spillover in Yangtze Estuary are clarified in terms of a successive process comprising the source, transport, and drainage of the spillover sediment.


2017 ◽  
Vol 196 ◽  
pp. 399-410 ◽  
Author(s):  
Yuyang Shao ◽  
Xiaoteng Shen ◽  
Jerome P.-Y. Maa ◽  
Jian Shen

2012 ◽  
Vol 1 (33) ◽  
pp. 69
Author(s):  
Zheng Bing Wang ◽  
Pingxing Ding

The channels in the Yangtze Estuary have an ordered-branching structure: The estuary is first divided by the Chongming Island into the North Branch and the South Branch. Then the South Branch is divided into the North Channel and South Channel by the Islands Changxing and Hengsha. The South Channel is again divided into the North and South Passage by the Jiuduansha Shoal. This three-level bifurcation and four-outlet configuration appears to be a natural character of the estuary, also in the past (Chen et al., 1982), although the whole system has been extending into the East China Sea in the southeast direction due to the abundant sediment supply from the Yangtze River. Recently, the natural development of the system seems to be substantially disturbed by human interferences, especially the Deep Navigation Channel Project. For the understanding of the behaviour of the bifurcating channel system in the estuary we present analysis on two aspects: (1) the equilibrium configuration of river delta distributary networks, and (2) influence of tidal flow on the morphological equilibrium of rivers. Based on the analyses we conclude that the branching channel structure of the Yangtze Estuary can be classified as tide-influenced river delta distributary networks. Its basic structure is the same as in case of river dominated delta. The empirical relations describing the basic features of the river-dominated distributary delta networks can be explained by theoretical analysis, although they are not fully satisfied by the Yangtze Estuary because of the influence of the tide. Two major influences of the tide are identified, viz. increasing the resistance to the river flow into the sea and increasing the sediment transport capacity. As consequence of these two influences the cross-sectional area of the river/estuary increases in the seawards direction and the bed slope decreases. The insights from the analyses are helpful for the understanding of the impact of the Deep Navigation Channel Project on the large scale morphological development of the estuary.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yibang Wang ◽  
Cui Liang ◽  
Zhaomin Chen ◽  
Shude Liu ◽  
Hui Zhang ◽  
...  

Estuaries, where fresh and salty water converge, provide abundant nutrients for ichthyoplankton. Ichthyoplankton, including fish eggs, larvae, and juveniles, are important fishery recruitment resources. The Yangtze Estuary and its adjacent waters comprise a typical large-scale estuary and supply many important fish spawning, feeding, and breeding areas. In this study, 1,291 ichthyoplankton individuals were collected in the Yangtze Estuary in spring, from 2013 to 2020. The aims of the study were to provide detailed information on characteristics of the ichthyoplankton assemblage, explore interannual variation, and evaluate the effects of environmental variables on the temporal variation in assemblage structure. Twenty-six species in seventeen families were identified. The dominant species were Coilia mystus, Chelidonichthys spinosus, Engraulis japonicus, Hypoatherina valenciennei, Larimichthys polyactis, Salanx ariakensis, Stolephorus commersonnii, and Trachidermus fasciatus. The ichthyoplankton assemblage changed significantly over time, and Chelidonichthys spinosus became one of the dominant species. Canonical correspondence analysis showed that temperature and chlorophyll a were the key factors affecting the assemblage structure in the Yangtze Estuary in spring.


2020 ◽  
Author(s):  
Huib E. de Swart ◽  
Inge van Tongeren

<p>Many estuarine systems experience increased salt intrusion, which is harmful for ecology and agriculture and may cause problems for fresh water supply to cities. Some causes of salt intrusion are extraction of fresh water in the upper reaches of the estuary and climate change. Besides, anthropogenic measures, like deepening of channels, are known to have a strong impact on the salt balance.</p><p>This contribution focuses on salt intrusion in estuarine networks, which consist of multiple connected channels. The motivation of the study arose from observations in the Yangtze estuary that reveal frequent overspill of salt between its different channels. To understand the underlying physics of such behaviour, an exploratory, width- and tidally averaged model has been developed and analysed. This model describes the competition between export of salt by river flow and import of salt by density-driven flow and horizontal diffusion. Its key new aspect is that it generalises an earlier model MacCready (2004) from a single channel to estuarine networks. The new model calculates the distribution of salt in, and salt exchange between the channels, as well as the distribution of river water over the different channels.  </p><p>Here, results will be presented for a simplified estuarine network consisting of the South Channel, South Passage and North Passage of the Yangtze Estuary. It will be shown that, for the present-day situation, dry season and spring tide, salt intrusion is larger in the South Passage than in the North Passage. As will be explained, this is mainly due to the different geometry of the two channels. Furthermore, it will be shown that there is slightly more river water transport through the South Passage than through the North Passage, except during high river discharge and neap tide. These results agree with field data and results from numerical studies.</p><p>Other results that will be presented are the sensitivity of salinity intrusion length and distribution of river water over the different channels to changes in, respectively, upstream river discharge, tidal currents and human interventions. Specifically, the effects of the creation of a Deepwater Navigation Channel in the North Passage on salt dynamics will be shown and discussed.</p><p>Reference:<br>MacCready, P. 2004. Toward a unified theory of tidally-averaged estuarine salinity structure. Estuaries 27, 561-570.</p>


2012 ◽  
Vol 46 (4) ◽  
pp. 60-70 ◽  
Author(s):  
Zhenyi Cao ◽  
Xiao Hua Wang ◽  
Weibing Guan ◽  
Les J. Hamilton ◽  
Qi Chen ◽  
...  

AbstractA bottom quadrapod was deployed from March 29 to April 5, 2009 to measure bottom boundary layer (BBL) flows and nepheloid layer properties in the Deepwater Navigation Channel in the North Passage of Shanghai Port in the Yangtze estuary. Using a downward-looking acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter, detailed measurements of mean velocity and turbulence distribution within 1 m above the seabed were obtained. It appears that corrupted speeds measured for the deeper bins are caused by formation of the nepheloid layer at the seabed, implying that the ADCP is not a suitable instrument to measure current velocities in the bins nearest the seafloor. A statistical clustering method was used to characterize the current profiles in the BBL. The majority of current profiles within the BBL had a simple shape with current speed monotonically decreasing with depth, reflecting a logarithmic boundary layer. Phase-corrupted ADCP speeds measured for bins close to the bottom are shown to be useful as proxies to indicate the presence of primary and secondary lutoclines/nepheloid layers. A lutocline is a sediment-induced density gradient or pycnocline. The primary lutocline is closest to the bottom, and below it is the nepheloid layer, which is commonly composed of fluid mud. The proxies indicated that a nepheloid layer formed in the neap tide when the current velocity 1 m above the seabed dropped below a threshold of 0.65 m/s. The lutocline height was indicated to be about 0.2 m above the seabed. A secondary lutocline in the water column was also observed in the second half of the record, when the lowest maximum currents occurred.


Sign in / Sign up

Export Citation Format

Share Document