scholarly journals Porous Titanium Dioxide Spheres for Drug Delivery and Sustained Release

2021 ◽  
Vol 8 ◽  
Author(s):  
Xin-gang Cui ◽  
Hua Chen ◽  
Qing-bang Ye ◽  
Xin-yu Cui ◽  
Xiao-jing Cui ◽  
...  

By hydrothermal method, porous TiO2 spheres with pompon morphology are successfully synthesized in the tetrabutyl titanate (TBT)–acetic acid (HAc) system with no other additives. The morphological, structural and textural properties of the specimen are figured out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray powder diffraction (XRD), N2 adsorption/desorption, and fluorescence microscope. The results show the pompon-like morphology of porous TiO2 with high specific surface area and large pore volume, which can be used as a drug carrier. In this paper, doxorubicin hydrochloride (DOX) is chosen as drug model to understand the process of drug release. And results indicate that the porous TiO2 is biocompatible and can be used for continuing drug-release, which shows lots of possibilities in medical fields.

Crystals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 466 ◽  
Author(s):  
Haixia Liu ◽  
Lunan Zhang ◽  
Tianduo Li

The development of photocatalytic materials with specific morphologies promises to be a good opportunity to discover geometrically relevant properties. Herein, this paper reported a facile hydrothermal method to directly synthesize TiO2 crystals with flower-like structures using tetrabutyl titanate (TBT) as a titanium source and ethylene glycol as an additive. We also proposed a reasonable growth mechanism by controlling reaction time in detail. The as-prepared samples were analyzed by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy for structure and morphology characterization. The N2 adsorption-desorption isotherm results showed that the surface area of flower-like TiO2 with 10 h reaction time can reach 297 m2/g. We evaluated the photocatalytic performance of samples by using the degradation rate of methylene blue (MB) solution under UV-vis light. The TiO2 with 10 h reaction time exhibited a superior photocatalytic property than other samples in degrading MB under UV-vis light irradiation. More importantly, the catalyst could be reused many times. These results could benefit from the special morphology, high crystallinity and large specific surface area of the samples.


2013 ◽  
Vol 341-342 ◽  
pp. 13-17
Author(s):  
Xiao Yun Zhang ◽  
Hong Yan Qin ◽  
Xiu Xin Zheng ◽  
Shi Hu Yu ◽  
Wei Wu

CO2solid adsorbent was prepared through impregnating acrylonitrile (AN) modified monoethanolamine (MEA) into structurally disordered mesoporous silica (M) pore channel. Its structure was characterized by X-ray diffraction characterization (XRD), N2adsorption-desorption tests (BET), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR). The capacity of CO2adsorption and desorption were measured and evaluated by comparison with MEA-impregnated material. The results showed that the capacity of M-MN-50 reached up to 125.8 mg·g-1and could desorb completely at the temperature of 40 °C by vacuum with 2.6 KPa. The hybrid material exhibited satisfactory performance during 10 turnovers.


2020 ◽  
Vol 7 (10) ◽  
pp. 200650
Author(s):  
Liang Hao ◽  
Xiaojia Li ◽  
Yang Wang

The mesoporous silicate molecular sieves were synthesized with polyether F127 as the template by the aerosol-assisted method for loading and release of ibuprofen (IBU). The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N 2 adsorption–desorption isotherms. The drug IBU was applied as a model drug to investigate the drug release behaviour by ultraviolet spectrophotometry measurements. The investigation results demonstrate that mesoporous silicate molecular sieves by the aerosol-assisted method are spherical with a core–shell structure. As the drug carrier, it has good structural stability and can achieve drug controlled release which is expected. It exhibits safety to a certain degree. Therefore, the aerosol-assisted synthesis method provides a new idea for the synthesis of sustained-release drug carriers.


NANO ◽  
2015 ◽  
Vol 10 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Tianjiao Bi ◽  
Jiafeng Wan ◽  
Shilin Yang ◽  
Xiujuan Yu ◽  
Fangwei Ma

Nitrogen-doped mesoporous carbon spheres (NMCSs) supporting anatase TiO 2 ( NMCSs – TiO 2) were prepared by a simple two-step solvothermal approach. The characterizations for the physicochemical properties of prepared samples under different solvothermal temperatures were carried out by X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption–desorption (Brunauer–Emmett–Teller (BET) measurements), Fourier transform infrared (FT-IR) spectroscopy, Raman scattering and UV-Vis diffuse reflectance spectra, were combined in order to determine the crystal phase and grain size, shape, degree of mesoporous carbon incorporation, and nature of the resultant oxycarbide chemical bonding on the surface and in the bulk. The high relative photocatalytic activity of NMCSs – TiO 2 nanoparticle was evaluated through a study of the decomposition of phenol under visible-light excitation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ying Zhang ◽  
Dong Wang ◽  
Xu Zhang ◽  
Fengyu Qu

Porous cuprous oxide (Cu2O) nanospheres composed of small nanoparticles with diameters at 10~20 nm were successfully synthesized without surfactant at room temperature within 5 min. The products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), N2adsorption-desorption, and Fourier transform infrared (FT-IR) spectrum. The adsorption ability of the as-prepared products towards methyl orange (MO) as the pollutant was investigated and FT-IR spectrum was employed to identify the adsorbed species. In addition, the reusability of the as-prepared products was studied as well.


2018 ◽  
Vol 22 (11) ◽  
pp. 972-980 ◽  
Author(s):  
Mojtaba Bagherzadeh ◽  
Elnaz Mesbahi

A heterogenized meso-tetrakis(2,3-dihydroxyphenyl)porphyrinatomanganese(III) acetate at zeolite imidazolate framework-8 (T(2,3-OHP)PorMn@ZIF-8) is investigated for the catalytic olefin epoxidation reactions at room temperature. Heterogenization is accomplished through a non-classical hydrogen bond proposed between T(2,3-OHP)PorMn bearing O–H groups and C–H of the 2-methylimidazolate linkers in the ZIF-8 structure. The aforementioned compound is characterized by X-ray powder diffraction (XRD), atomic absorption spectroscopy (AAS), nitrogen adsorption−desorption, FT-IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The catalytic system with rather high potential of reusability is proposed as a fairly efficient epoxidation catalyst compared to reports in homogeneous media.


2021 ◽  
Author(s):  
Ayat Nuri ◽  
Abolfazl Bezaatpour ◽  
Mandana Amiri ◽  
Nemanja Vucetic ◽  
Jyri-Pekka Mikkola ◽  
...  

AbstractMesoporous SBA-15 silicate with a high surface area was prepared by a hydrothermal method, successively modified by organic melamine ligands and then used for deposition of Pd nanoparticles onto it. The synthesized materials were characterized with infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen physisorption, scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP-OES). The catalyst was effectively used in the Mizoroki–Heck coupling reaction of various reactants in the presence of an organic base giving the desired products in a short reaction time and with small catalysts loadings. The reaction parameters such as the base type, amounts of catalyst, solvents, and the temperature were optimized. The catalyst was easily recovered and reused at least seven times without significant activity losses. Graphic Abstract


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


2011 ◽  
Vol 284-286 ◽  
pp. 684-687
Author(s):  
Chang Yu Li ◽  
Li Li Liu ◽  
Shou Xin Liu

Without using any templates or surfactants, flowerlike α-nickel hydroxide (Ni(OH)2) was successfully synthesized by homogeneous precipitation method. The prepared products were characterized by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and N2 adsorption-desorption. The prepared Ni(OH)2 is α-phase with specific surface area of 245.0 m2/g and shows flowerlike structure with 4-6 um in diameter.


Sign in / Sign up

Export Citation Format

Share Document