scholarly journals Synthesis of mesoporous silicate molecular sieves by the aerosol-assisted method for loading and release of drug

2020 ◽  
Vol 7 (10) ◽  
pp. 200650
Author(s):  
Liang Hao ◽  
Xiaojia Li ◽  
Yang Wang

The mesoporous silicate molecular sieves were synthesized with polyether F127 as the template by the aerosol-assisted method for loading and release of ibuprofen (IBU). The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N 2 adsorption–desorption isotherms. The drug IBU was applied as a model drug to investigate the drug release behaviour by ultraviolet spectrophotometry measurements. The investigation results demonstrate that mesoporous silicate molecular sieves by the aerosol-assisted method are spherical with a core–shell structure. As the drug carrier, it has good structural stability and can achieve drug controlled release which is expected. It exhibits safety to a certain degree. Therefore, the aerosol-assisted synthesis method provides a new idea for the synthesis of sustained-release drug carriers.

NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350050
Author(s):  
MIN GUAN ◽  
HAI-PENG BI ◽  
ZUYUAN WANG ◽  
SHAOHUA BU ◽  
LING HUANG ◽  
...  

Mesoporous silicas SBA-15 are modified with β-Cyclodextrins (β-CD) by simple grafting method. β-CD functionalized SBA-15 was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), nitrogen adsorption–desorption measurements, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Furthermore, the applicability of it is investigated through studying the adsorption properties of clenbuterol. It showed better adsorption capacities of clenbuterol than pure SBA-15. β-CD functionalized SBA-15 material has the potential applications in the treatment of clenbuterol contamination in food and environment science.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


2018 ◽  
Vol 769 ◽  
pp. 114-119 ◽  
Author(s):  
Artur A. Sivkov ◽  
Artur Nassyrbayev ◽  
Maksim Gukov

In this work, the powder of nanoscale cubic SiC was obtained by the plasmodynamic synthesis in a coaxial magnetoplasma accelerator (CMPA) with a graphite central electrode and an accelerator channel. The synthesis method allows obtaining a product with a high content of nanoscale cubic silicon carbide. The work is aimed to study the influence of the precursor’s ratio on the product. The synthesized products were analyzed by X-ray diffraction and transmission electron microscopy.


2008 ◽  
Vol 8 (12) ◽  
pp. 6445-6450
Author(s):  
F. Paraguay-Delgado ◽  
Y. Verde ◽  
E. Cizniega ◽  
J. A. Lumbreras ◽  
G. Alonso-Nuñez

The present study reports the synthesis method, microstructure characterization, and thermal stability of nanostructured porous mixed oxide (MoO3-WO3) at 550 and 900 °C of annealing. The material was synthesized using a hydrothermal method. The precursor was prepared by aqueous solution using ammonium heptamolibdate and ammonium metatungstate, with an atomic ratio of Mo/W = 1. The pH was adjusted to 5, and then the solution was transferred to a teflon-lined stainless steel autoclave and heated at 200 °C for 48 h. The resultant material was washed using deionized water. The specific surface area, morphology, composition, and microstructure before and after annealing were studied by N2 physisorption, scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and X-Ray diffraction (XRD). The initial synthesized materials showed low crystallinity and high specific surface area around (141 m2/g). After thermal annealing the material showed higher crystallinity and diminished its specific surface area drastically.


2011 ◽  
Vol 236-238 ◽  
pp. 1873-1876 ◽  
Author(s):  
Jun Jie Tao ◽  
Yun Qiang Xu ◽  
Guo Wei Zhou ◽  
Cui Cui Wu ◽  
Hong Bin Song ◽  
...  

Ordered mesoporous SBA-15 was synthesized through hydrothermal process under acidic condition. The material was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), and N2 adsorption-desorption. The results indicated that SBA-15 has 2-dimensional hexagonal p6mm mesoscopic structure and well-ordered parallel mesochannel. The as-obtained mesoporous silica was used for controlled release of water-insolube drug emodin. The loading capacity could achieve 6.64 mg/g, and the release profiles that studied in phosphate buffered saline (PBS, pH = 7.4) showed that released amount of emodin was 95.8 % after 48 h.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650013 ◽  
Author(s):  
Xijian Liu ◽  
Yangang Sun ◽  
Yeying Wang ◽  
Lijuan Zhang ◽  
Jie Lu

Nd-doped TiO2 mesoporous microspheres with possessing regular micro/nanostructure were synthesized by a simple and facile method. The structure and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms and UV-Visible absorbance spectroscopy. It was revealed that Nd-doped TiO2 mesoporous microspheres are composed of primary nanoparticles with a particle size of [Formula: see text]25[Formula: see text]nm. The photocatalytic activities of all the samples were evaluated by degradation methyl orange (MO) in aqueous solution as a model reaction under xenon lamp light irradiation. The results showed that the doped samples demonstrated a higher photocatalytic activity than TiO2 mesoporous microspheres, and the MO of 10[Formula: see text]mg/mL almost could be completely degraded by the Nd-doped TiO2 mesoporous sample (the dosage of Nd salt to TiO2 is 6%) under xenon lamp light irradiation within 1[Formula: see text]h.


2021 ◽  
Vol 11 (1) ◽  
pp. xx-xx
Author(s):  
Nga Phan To ◽  
Lien Nguyen Hong ◽  
Tuyen Le Van ◽  
Nhan Phan Chi ◽  
Huyen Phan Thanh

Porous LaFeO3 were synthesised by nanocasting method using mesoporous silica (SBA-15) as a hard template and used as a visible-light-driven photocatalyst. The as-synthesised LaFeO3 photocatalyst were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD), N2 adsorption-desorption, and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-vis DRS). The photo-Fenton catalytic activities of porous LaFeO3 were investigated for the degradation of oily-containing wastewater. The results showed that porous LaFeO3 had better photo-Fenton catalytic activity under visilbe light irradiation than pure LaFeO3. The remarkable improvement photo-Fenton catalytic activity of porous LaFeO3 material could be attributed to the synergistic effect of adsorption and visible light photo-Fenton processes thanks to its porous structure.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 363
Author(s):  
Jieun Kim ◽  
La-Hee Park ◽  
Jeong-Myeong Ha ◽  
Eun Duck Park

The oxidative coupling of methane (OCM) is operated at high temperatures and is a highly exothermic reaction; thus, hotspots form on the catalyst surface during reaction unless the produced heat is removed. It is crucial to control the heat formed because surface hotspots can degrade catalytic performance. Herein, we report the preparation of Mn2O3-Na2WO4/SiC catalysts using SiC, which has high thermal conductivity and good stability at high temperatures, and the catalyst was applied to the OCM. Two Mn2O3-Na2WO4/SiC catalysts were prepared by wet-impregnation on SiC supports having different particle sizes. For comparison, the Mn2O3-Na2WO4/SiO2 catalyst was also prepared by the same method. The catalysts were analyzed by nitrogen adsorption–desorption, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The transformation of SiC into α-cristobalite was observed for the Mn2O3-Na2WO4/SiC catalysts. Because SiC was completely converted into α-cristobalite for the nano-sized SiC-supported Mn2O3-Na2WO4 catalyst, the catalytic performance for the OCM reaction of Mn2O3-Na2WO4/n-SiC was similar to that of Mn2O3-Na2WO4/SiO2. However, only the surface layer of SiC was transformed into α-cristobalite for the micro-sized SiC (m-SiC) in Mn2O3-Na2WO4/m-SiC, resulting in a SiC@α-cristobalite core–shell structure. The Mn2O3-Na2WO4/m-SiC showed higher methane conversion and C2+ yield at 800 and 850 °C than Mn2O3-Na2WO4/SiO2.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3349 ◽  
Author(s):  
Pablo A. Ochoa Rodríguez ◽  
Tamara B. Benzaquén ◽  
Gina A. Pecchi ◽  
Sandra G. Casuscelli ◽  
Verónica R. Elías ◽  
...  

Titanium dioxide materials were synthesized using two different methods. The samples were characterized by X-ray diffraction (XRD), UV–Visible diffusion reflectance spectroscopy (UV-Vis DR), Raman spectroscopy, N2 adsorption/desorption, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron spectroscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Although both kind of materials were found to have mesoporous structure and anatase crystalline phase, one of them was obtained from a synthesis method that does not involve the use of surfactants, and therefore, does not require calcination at high temperatures. This implies that the synthesized solid was self-doped with carbon species, coming only from the same source used for titanium. Then, the relationship between the presence of these species, the final calcination temperature, and the photocatalytic activity of the solids was studied in terms of the degradation and mineralization of an Acid Orange 7 aqueous solution, under visible radiation. A photosensitizing effect caused by the non-metal presence, that allows the solid to extend its absorption range, was found. Hence, a novel route to prepare C-modified photoactive mesoporous TiO2, simpler and cheaper, where neither a template nor an external carbon source is used, could be performed.


Sign in / Sign up

Export Citation Format

Share Document