scholarly journals Effects of Different Strain Rates on the Impact Properties of Recycled Aggregate Concrete Modified With Nanosilica Solution and Polyvinyl Alcohol Fiber

2021 ◽  
Vol 8 ◽  
Author(s):  
Xingguo Wang ◽  
Maolin Jiang ◽  
Xianggang Zhang ◽  
Zhaoxia Cheng ◽  
Jian Gong ◽  
...  

The recycled aggregate (RA) was modified by 2% nanosilica solution, and the split Hopkinson pressure bar (SHPB) test device was used to study the dynamic impact properties of the modified recycled aggregate concrete (RAC) mixed with polyvinyl alcohol (PVA) fibers. The RA replacement percentage, the amount of PVA fiber, and the strain rate were variables. The failure pattern, the stress–strain curve of the nanosilica solution, and PVA fiber-modified RAC were shown under different strain rate conditions. Dynamic peak stress, peak strain, and dynamic increase factor (DIF) of the specimens are discussed. The results showed that the stress and dynamic peak strain value of the specimen increased with the increase of the strain rate; moreover, with the increase of the RA replacement percentage and the PVA fiber content, the dynamic peak stress of the specimen decreases, while the dynamic peak strain and the DIF value increase. The incorporation of nanosilica-modified RA is beneficial to the improvement of the impact performance of RAC, and the incorporation of an appropriate amount of the PVA fiber effectively improves the deformability of RAC.

2021 ◽  
Vol 13 (10) ◽  
pp. 5741
Author(s):  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Yu-Fei Wu ◽  
Xiaoshan Lin ◽  
Muhammad Riaz Ahmad

The addition of macro-polypropylene fibres improves the stress-strain performance of natural aggregate concrete (NAC). However, limited studies focus on the stress-strain performance of macro-polypropylene fibre-reinforced recycled aggregate concrete (RAC). Considering the variability of coarse recycled aggregates (CRA), more studies are needed to investigate the stress-strain performance of macro-polypropylene fibre-reinforced RAC. In this study, a new type of 48 mm long BarChip macro-polypropylene fibre with a continuously embossed surface texture is used to produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC). The stress-strain performance of BFNAC and BFRAC is studied for varying dosages of BarChip fibres. Results show that the increase in energy dissipation capacity (i.e., area under the curve), peak stress, and peak strain of samples is observed with an increase in fibre dosage, indicating the positive effect of fibre addition on the stress-strain performance of concrete. The strength enhancement due to the addition of fibres is higher for BFRAC samples than BFNAC samples. The reduction in peak stress, ultimate strain, toughness and specific toughness of concrete samples due to the utilisation of CRA also reduces with the addition of fibres. Hence, the negative effect of CRA on the properties of concrete samples can be minimised by adding BarChip macro-polypropylene fibres. The applicability of the stress-strain model previously developed for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is also examined.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012060
Author(s):  
Zhaoyang Ding ◽  
Qun Su ◽  
Hongguan Bian ◽  
Qing Wang ◽  
Jinghai Zhou

Abstract Geopolymer recycled aggregate concrete (GRAC) was prepared by replacing cement with geopolymer and natural aggregate with wast concrete. The effect of water-glass modules on mechanical properties of GRAC was studied. It was found that there are tow kind of binding structures in geopolymer hydration product: C-A-S-H and N-A-S-H, they both contribute to the strength of GRAC. The value of size conversion coefficient of current national standard is inapplicable for GRAC, the calculation method of which is given in this paper. Elasticity modulus and peak stress of GRAC is proportional to water-glass modulus, and peak strain is inversely proportional and its constitutive equation was established.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6712
Author(s):  
Fan Xu ◽  
Tao Li ◽  
Chenghua Li ◽  
Zhijun Li ◽  
Sheliang Wang ◽  
...  

To improve the high brittleness of recycled aggregate concrete containing iron ore tailings (TRAC), the feasibility of adding polypropylene fiber (PPF) to TRAC was studied by performing a compression stress–strain curve test, scanning electron microscope characterization, and a freeze–thaw cycle test. The results indicated that PPF had a beneficial impact on reducing the brittleness of TRAC. With the increase in PPF content, the peak strain increased, the elastic modulus decreased, and the peak stress and energy absorption capacity increased at first and then decreased. Furthermore, the microstructure investigation revealed that the interface friction between the PPF, aggregate, and cement matrix was the main source of energy dissipation. When the load acted on the concrete, the stress was dispersed to the fiber monofilaments, thus effectively enhancing the peak stress and peak strain of concrete and suppressing the generation and development of cracks in the concrete. In terms of freeze–thaw resistance, adding a small amount of PPF could reduce the negative effects of the freeze–thaw process on the cement matrix. On the premise of ensuring strength, the waste utilization should be as high as possible. Therefore, it was suggested that the content of PPF in fiber-reinforced tailings recycled aggregate concrete (TRAC-PP) should be 0.6%.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xingguo Wang ◽  
Fei Cheng ◽  
Yixin Wang ◽  
Xianggang Zhang ◽  
Haicheng Niu

The optimal soaking time and nanosilica concentration were chosen by the physical properties of the nanosilica-modified recycled aggregate. Recycled aggregate concrete (RAC) and nanosilica recycled aggregate concrete (SRAC) were fabricated by using ordinary recycled aggregate and nanosilica-modified recycled aggregate. Based on the comparative experimental study of basic mechanical properties, the effects of nanosilica recycled aggregate(SRA) modification and recycled aggregate(RA) replacement percentage on the basic mechanical properties of recycled concrete were analyzed. Finally, the split-Hopkinson pressure bar (SHPB) was used to conduct comparative experimental research on the impact resistance of recycled aggregate concrete and nanosilica-modified recycled aggregate concrete. The effects of nanosilica recycled aggregate modification and aggregate replacement percentage on failure morphology, dynamic peak stress, dynamic increase factor (DIF), dynamic peak strain were analyzed.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1446
Author(s):  
Shenglin Wang ◽  
Baolong Zhu

In recent years, recycled aggregate concrete (RAC) has become a research hotspot in the field of urban construction because of its resource utilization of construction waste. However, compared with original concrete, its strength is still low, which requires additional nano-SiO2 (NS) and fiber. In order to study the mechanism of strength improvement of RAC, this paper takes NS and polyvinyl alcohol (PVA) fiber as variable parameters; uniaxial and triaxial compression tests were carried out on RAC with PVA fiber and NS, and the mechanical properties of RAC were investigated The result shows that within the range of 3% NS content, an increase in the NS substitution rate causes the mechanical properties of RAC to improve significantly. The compressive strength of RAC increases again after adding PVA fiber; through a SEM (scanning electron microscopy) analysis of the specimen, it was found that the NS filled the micro-pores and micro-cracks in the RAC, and the PVA fiber changed the contact range between recycled aggregate and mortar, so the microstructure of the material was more compact. The mechanism of RAC strength improvement is explained in the microcosmic view.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yubin Lu ◽  
Xing Chen ◽  
Xiao Teng ◽  
Shu Zhang

This paper presents the experimental results of recycled aggregate concrete (RAC) specimens prepared with five different amounts of recycled coarse aggregate (RCA) (i.e., 0, 25%, 50%, 75%, and 100%) subjected to impact loading based on split Hopkinson pressure bar tests. Strain-rate effects on dynamic compressive strength and critical strain of RAC were studied. Results show that the impact properties of RAC exhibit strong strain-rate dependency and increase approximately linearly with strain-rate. The transition point from low strain-rate sensitivity to high sensitivity decreases with the increase of matrix strength.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2013 ◽  
Vol 671-674 ◽  
pp. 1736-1740
Author(s):  
Xue Yong Zhao ◽  
Mei Ling Duan

The complete stress-strain curves of recycled aggregate concrete with different recycled coarse aggregate replacement percentages were tested and investigated. An analysis was made of the influence of varying recycled coarse aggregate contents on the complete stress-strain curve, peak stress, peak strain and elastic modulus etc. The elastic modulus of RC is lower than natural concrete (NC), and with the recycled coarse aggregate contents increase, it reduces. While with the increase of water-cement ratio (W/C), recycled concrete compressive strength and elastic modulus improve significantly. In addition, put forward a new equation on the relationship between Ec and fcu of the RC.


2018 ◽  
Vol 10 (1) ◽  
pp. 26-53
Author(s):  
Junzhou Duan ◽  
Yubin Lu ◽  
Shu Zhang ◽  
Xiquan Jiang

To comparatively study the tensile properties and fracture patterns of recycled aggregate concrete with various replacement percentages (i.e. 0%, 25%, 50%, 75%, and 100%) of recycled coarse aggregate, the dynamic direct tensile tests, splitting tests, and spalling tests of recycled aggregate concrete in the strain-rate range of 100–102 s−1 were carried out using large diameter (75 mm) split Hopkinson tensile bar and pressure bar. Test results show that for recycled aggregate concrete, the quasi-static direct tensile strength is more marvelous than its quasi-static splitting strength. When recycled coarse aggregate replacement percentage is 0%–75%, the replacement percentage impact minimally on the quasi-static tensile strength of recycled aggregate concrete. In dynamic tensile tests, there exists apparent difference between the dynamic direct tensile strength and dynamic splitting. The dynamic tensile strength of recycled aggregate concrete increases with the increase of average strain-rate in all three kinds of tests. The average strain-rate affects the damage form of recycled aggregate concrete, which indicates that the recycled aggregate concrete has obvious rate sensitivity. There shows no obvious regularity between the dynamic tensile strength and the recycled coarse aggregate replacement percentage. And the indirect tensile strength calculation method used in this article offers the theoretical basis for the engineering application of recycled aggregate concrete.


Sign in / Sign up

Export Citation Format

Share Document