scholarly journals Asymmetry Thermal Analyses of Self-Supporting Friction Stir Welding

2022 ◽  
Vol 8 ◽  
Author(s):  
Zenglou Li ◽  
Chong Li ◽  
Shuohan Li ◽  
Demeng Yin ◽  
Zhenguo Qi ◽  
...  

Due to the inherent issue of requiring rigid back support, friction stir welding (FSW) has serious limitations for the welding of hollow structures. Self-supporting friction stir welding was proposed to join hollow aluminum extrusions, which could reduce the hindrance of the welding tool and the requirement of rigid back support. In this paper, finite element modeling analyses were carried out for the asymmetric temperature field in the process of self-supporting FSW. The peak temperature of the stir zone appeared in the upper shoulder affected zone, followed by the lower shoulder affected zone. In the upper shoulder affected zone, a peak temperature was not shown at the center of the curve due to the positive correlation between heat generation and radius and different heat dissipation rates. Considering the influence of thermal input and rotation speed on joint formation, 200 mm/min travel speed and 800 rpm rotation speed are the most proper parameters for 5-mm-thick 6082-T6 aluminum alloy self-supporting FSW butt welds.

2015 ◽  
Vol 786 ◽  
pp. 415-420 ◽  
Author(s):  
Wan Shun Chu ◽  
Farazila binti Yusof

The objective of this study is to investigate effects of different anvil back plates on heat dissipation velocity of the micro-friction stir welding (micro-FSW or) process. For this purpose, temperature field simulations are conducted for the micro-friction stir welding of AA5083-H323 aluminum alloy thin sheets by using the ceramic anvil back plate and conventional steel anvil back plate, respectively. Comparing the obtained two temperature fields, it is found that the ceramic anvil back plate significantly decreases the heat dissipation velocity of the micro-FSW process.


2009 ◽  
Vol 419-420 ◽  
pp. 533-536 ◽  
Author(s):  
Sheng Lu ◽  
Jing Chen ◽  
Xiao Dan Jia ◽  
Ze Xin Wang ◽  
Jing Jing Gong

By means of Friction stir welding (FSW), as-cast AM50 magnesium alloys were welded with travel speed of 50 mm/min and rotating rate of 1200 r/min. The thermal cycle was investigated by thermocouples and a paperless recorder. The results show that phenomenon of dual peaks and hysteresis exist in temperature curves of featured points at the starting part while only hysteresis in the middle part. The finishing part has the highest peak temperature while the starting part corresponds to the lowest one. Featured points for different depths in the same place share the same shape of temperature curves but with different peak temperature. The retaining time over recrystallization temperature at middle part is double that at finishing part.


2017 ◽  
Vol 26 (3) ◽  
pp. 1337-1345 ◽  
Author(s):  
Shujin Chen ◽  
Yang Zhou ◽  
Junrong Xue ◽  
Ruiyang Ni ◽  
Yue Guo ◽  
...  

2011 ◽  
Vol 110-116 ◽  
pp. 3165-3170 ◽  
Author(s):  
Ghodratollah Roudini ◽  
Sajad Gholami Shiri ◽  
Masoud Mohammadi Rahvard

there are some parameters in friction stir welding (FSW) technique such as tool design, tool rotation speed and tool travel which can be controlled in a precise manner thus controlling the energy input into the system. In this study the effects of these parameters were investigated on microstructure and tensile strength of 5052 aluminum alloy. Roll sheets of this alloy were welded by FSW method at different rotation speeds (400, 800, 1600 and 2500 rpm), welding speeds (50 and 100 mm/min) and tools shoulder diameters (14 and 20 mm). The microstructure results showed that the stir zone (SZ) and thermo-mechanically affected zone (TMAZ) had dynamically recrystallized and recovered respectively. Also the tensile strength of samples welded at tool rotation speeds of 400 and 800 rpm, travel speed 50 mm/min and tools shoulder diameter of 20 mm is similar to that of base metal. The tool rotation speeds of 400 rpm have a good welding ability with higher travel speed and lower tools shoulder diameter.


2020 ◽  
Vol 4 (4) ◽  
pp. 123
Author(s):  
Chaiyoot Meengam ◽  
Kittima Sillapasa

The semi-solid-metal 6063 aluminum alloy was developed for the automotive industry. The objective of this research was to optimize parameters in friction stir welding process that can provide the highest tensile strength. The ANOVA factorial design was used to analyze rotation speed, welding speed, and tool geometry at different factor levels of experimentation. The results showed that the optimized tensile strength was 120.7 MPa from the cylindrical tool, rotation speed was from 1300 to 2100 rpm, and welding speed less than 75 mm/min in the coefficient of determination R2 was 95.09%, as can be considered from the regression equation. The examination of the stir-zone and thermal mechanical affected zone using SEM and EDX showed that the new recrystallization of the microstructure causes fine grain in the stir-zone, coarse grain in advancing-side thermal mechanical affected zone, and equiaxed grain in the retracting-side thermal-mechanical affect zone. The intermetallic compounds of β-Al5FeSi phase transformation phase were formed to three types, i.e., β″-Al5Fe, Mg2Si, and Al8Fe2Si phase were observed. Moreover, in the stir-zone and thermal-mechanical-affected zone, defects were found such as flash defects, void or cavity defects, crack defects, lack of penetration defects, tunnel defects, kissing bond defects, and dendrite formation defects affecting weldability.


2015 ◽  
Vol 830-831 ◽  
pp. 274-277
Author(s):  
M. Agilan ◽  
R. Anbukkarasi ◽  
T. Venkateswran ◽  
Paul G. Panicker ◽  
Sathish V. Kailas ◽  
...  

For aerospace applications, Al-Cu-Li alloys are more attractive than conventional aluminum alloys due to their low density, high modulus and high strength. AA2195 is a third generation Al-Li alloy, developed with improved weldability. In this study, AA2195 alloy of 5mm thick sheets were welded by friction stir welding process (FSW). Tool rotational speed was varied from 400 rpm to 1000 rpm at constant travel speed of 60mm/min. Optimum tool rotation speed was identified and defect free weld coupons were processed with optimized parameter. Mechanical properties and micro structural characterization have been conducted on FSW welds.


Sign in / Sign up

Export Citation Format

Share Document