Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed

2010 ◽  
Vol 41 (11) ◽  
pp. 2914-2935 ◽  
Author(s):  
Vahid Firouzdor ◽  
Sindo Kou
2011 ◽  
Vol 110-116 ◽  
pp. 3165-3170 ◽  
Author(s):  
Ghodratollah Roudini ◽  
Sajad Gholami Shiri ◽  
Masoud Mohammadi Rahvard

there are some parameters in friction stir welding (FSW) technique such as tool design, tool rotation speed and tool travel which can be controlled in a precise manner thus controlling the energy input into the system. In this study the effects of these parameters were investigated on microstructure and tensile strength of 5052 aluminum alloy. Roll sheets of this alloy were welded by FSW method at different rotation speeds (400, 800, 1600 and 2500 rpm), welding speeds (50 and 100 mm/min) and tools shoulder diameters (14 and 20 mm). The microstructure results showed that the stir zone (SZ) and thermo-mechanically affected zone (TMAZ) had dynamically recrystallized and recovered respectively. Also the tensile strength of samples welded at tool rotation speeds of 400 and 800 rpm, travel speed 50 mm/min and tools shoulder diameter of 20 mm is similar to that of base metal. The tool rotation speeds of 400 rpm have a good welding ability with higher travel speed and lower tools shoulder diameter.


2015 ◽  
Vol 830-831 ◽  
pp. 274-277
Author(s):  
M. Agilan ◽  
R. Anbukkarasi ◽  
T. Venkateswran ◽  
Paul G. Panicker ◽  
Sathish V. Kailas ◽  
...  

For aerospace applications, Al-Cu-Li alloys are more attractive than conventional aluminum alloys due to their low density, high modulus and high strength. AA2195 is a third generation Al-Li alloy, developed with improved weldability. In this study, AA2195 alloy of 5mm thick sheets were welded by friction stir welding process (FSW). Tool rotational speed was varied from 400 rpm to 1000 rpm at constant travel speed of 60mm/min. Optimum tool rotation speed was identified and defect free weld coupons were processed with optimized parameter. Mechanical properties and micro structural characterization have been conducted on FSW welds.


2013 ◽  
Vol 68 (3-4) ◽  
pp. 175-178 ◽  
Author(s):  
Jinwen Qian ◽  
Jinglong Li ◽  
Fu Sun ◽  
Jiangtao Xiong ◽  
Fusheng Zhang ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Zenglou Li ◽  
Chong Li ◽  
Shuohan Li ◽  
Demeng Yin ◽  
Zhenguo Qi ◽  
...  

Due to the inherent issue of requiring rigid back support, friction stir welding (FSW) has serious limitations for the welding of hollow structures. Self-supporting friction stir welding was proposed to join hollow aluminum extrusions, which could reduce the hindrance of the welding tool and the requirement of rigid back support. In this paper, finite element modeling analyses were carried out for the asymmetric temperature field in the process of self-supporting FSW. The peak temperature of the stir zone appeared in the upper shoulder affected zone, followed by the lower shoulder affected zone. In the upper shoulder affected zone, a peak temperature was not shown at the center of the curve due to the positive correlation between heat generation and radius and different heat dissipation rates. Considering the influence of thermal input and rotation speed on joint formation, 200 mm/min travel speed and 800 rpm rotation speed are the most proper parameters for 5-mm-thick 6082-T6 aluminum alloy self-supporting FSW butt welds.


2018 ◽  
Vol 62 (4) ◽  
pp. 277-283 ◽  
Author(s):  
S. P. Sundar Singh Sivam ◽  
Krishnaswamy Saravanan ◽  
Nagaraj Pradeep ◽  
Karuppiah Sathiya Moorthy ◽  
Sankarapandian Rajendrakumar

The welding of Magnesium and Titanium and its alloys has continuously depicted a good challenge for designers and technologists. Ti and Mg alloys, particularly heat-treatable alloys, are difficult to join by fusion fastening techniques. The welding of dissimilar alloy such as Ti (Grade 2) and Mg (AZ91D) Alloy is an important problem during Friction Stir Welding (FSW). In this paper, the influence of Rotation speed (Rpm), Travel Speed (mm/min), Bottom Diameter Tool Pins (mm) and Tool Profiles of Ti and Mg alloy during FSW was investigated by Grey Relational Analysis and Anova was used to work out the foremost important Travel speed and feed rate affecting the Response. The primary and cooperation impact of the information factors on the normal reactions are examined. The expected values and measured values are genuinely close.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


Author(s):  
Neetesh Soni ◽  
Ambrish Singh

The aim of this work is to assess the influence of Friction Stir Welding (FSW), process parameters, optimized tool traveling speed, and corrosion resistance of the 0.95 Mg-Al-alloy and pure copper weldment. Samples of aluminum-copper with and without deformation were characterized to investigate the metallurgical effects created during the welding deformation process. Effect of process parameters on microstructure and corrosion rate have been investigated for all the samples. All the electrochemical and polarization tests were done in 3.5 wt.% NaCl solution. Scanning Kelvin Probe (SKP) was done to detect the localized corrosion on the surface. Optical micrography observation indicated that the primary α-Al phase, which was formed during solidification can effectively limit the growth of Cu9Al4 phase. Finer acicular α-Al precipitates were observed in CuAl matrix during joining process that tends to coarser with the increase in tools travel speed. The electrochemical and polarization results showed that among all the tool travelling speed the specimen joined at tool travelling speed of 40 mm/min shows the best non-corrosive property.


Author(s):  
Tarmizi Tarmizi ◽  
Riki Indrawan ◽  
Irfan Irfan

PENGARUH TOOL ROTATION SPEED TERHADAP SIFAT MEKANIK SAMBUNGAN ALUMINIUM PADUAN 6061 T6 PADA PROSES FRICTION STIR WELDING. Pengelasan aduk tekan merupakan proses pengelasan yang baru dikembangkan pada tahun 1991, hingga saat ini berbagai penelitian terus dilakukan untuk menemukan parameter yang dapat menghasilkan sambungan las yang optimum sebagai alternatif proses pengelasan fusi yang masih memiliki beberapa kekurangan. Penelitian ini bertujuan untuk mengetahui pengaruh kecepatan putar tool yang menjadi salah satu parameter penting dalam friction stir welding pada pelat aluminium paduan 6061-T6 dengan tebal 6 mm terhadap sifat mekanik sambungan las, dengan variasi kecepatan putar yang digunakan 910 rpm, 1175 rpm, 1555 rpm, 1700 rpm dan 2000 rpm untuk mendapatkan parameter yang optimum. Berdasarkan penelitian yang telah dilakukan didapatkan hasil bahwa sambungan las dengan kecepatan putaran 910 rpm, 1175 rpm dan 1555 rpm tidak terdapat cacat dan memenuhi kriteria sambungan las berdasarkan standar AWS D17.3 sedangkan sambungan las yang memiliki sifat mekanik yang paling optimum yaitu sambungan las dengan kecepatan putar tool 910 rpm karena pengkasaran butir dan larutnya presipitat tidak terlalu signifikan dibandingkan dengan kecepatan putaran lainnya.Kata kunci: Pengelasan aduk tekan, pengelasan fusi, kecepatan putar, tool, aluminium paduan 6061-T6.


2018 ◽  
Vol 762 ◽  
pp. 339-342
Author(s):  
Ho Sung Lee ◽  
Koo Kil No ◽  
Joon Tae Yoo ◽  
Jong Hoon Yoon

The object of this study was to study mechanical properties of friction stir welded joints of AA2219 and AA2195. AA2219 has been used as an aerospace materials for many years primarily due to its high weldability and high specific strength in addition to the excellent cryogenic property so to be successfully used for manufacturing of cryogenic fuel tank for space launcher. Relatively new Aluminum-Lithium alloy, AA2195 provides significant saving on weight and manufacturing cost with application of friction stir welding. Friction stir welding is a solid-state joining process, which use a spinning tool to produce frictional heat in the work piece. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool, and the experiment was conducted under the condition that the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. Tensile tests were conducted to study the strength of friction stir welded joints and microhardness were measured with microstructural analysis. The results indicate the failure occurred in the relatively weaker TMAZ/HAZ interface of AA2219. The optimum process condition was obtained at the rotation speed of 600-800 rpm and the travelling speed of 180-240 mm/min.


Sign in / Sign up

Export Citation Format

Share Document