scholarly journals Diagnosis of COVID-19 Pneumonia Based on Graph Convolutional Network

2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoling Liang ◽  
Yuexin Zhang ◽  
Jiahong Wang ◽  
Qing Ye ◽  
Yanhong Liu ◽  
...  

A three-dimensional (3D) deep learning method is proposed, which enables the rapid diagnosis of coronavirus disease 2019 (COVID-19) and thus significantly reduces the burden on radiologists and physicians. Inspired by the fact that the current chest computed tomography (CT) datasets are diversified in equipment types, we propose a COVID-19 graph in a graph convolutional network (GCN) to incorporate multiple datasets that differentiate the COVID-19 infected cases from normal controls. Specifically, we first apply a 3D convolutional neural network (3D-CNN) to extract image features from the initial 3D-CT images. In this part, a transfer learning method is proposed to improve the performance, which uses the task of predicting equipment type to initialize the parameters of the 3D-CNN structure. Second, we design a COVID-19 graph in GCN based on the extracted features. The graph divides all samples into several clusters, and samples with the same equipment type compose a cluster. Then we establish edge connections between samples in the same cluster. To compute accurate edge weights, we propose to combine the correlation distance of the extracted features and the score differences of subjects from the 3D-CNN structure. Lastly, by inputting the COVID-19 graph into GCN, we obtain the final diagnosis results. In experiments, the dataset contains 399 COVID-19 infected cases, and 400 normal controls from six equipment types. Experimental results show that the accuracy, sensitivity, and specificity of our method reach 98.5%, 99.9%, and 97%, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4208
Author(s):  
Chengjun Chen ◽  
Chunlin Zhang ◽  
Tiannuo Wang ◽  
Dongnian Li ◽  
Yang Guo ◽  
...  

Monitoring the assembly process is a challenge in the manual assembly of mass customization production, in which the operator needs to change the assembly process according to different products. If an assembly error is not immediately detected during the assembly process of a product, it may lead to errors and loss of time and money in the subsequent assembly process, and will affect product quality. To monitor assembly process, this paper explored two methods: recognizing assembly action and recognizing parts from complicated assembled products. In assembly action recognition, an improved three-dimensional convolutional neural network (3D CNN) model with batch normalization is proposed to detect a missing assembly action. In parts recognition, a fully convolutional network (FCN) is employed to segment, recognize different parts from complicated assembled products to check the assembly sequence for missing or misaligned parts. An assembly actions data set and an assembly segmentation data set are created. The experimental results of assembly action recognition show that the 3D CNN model with batch normalization reduces computational complexity, improves training speed and speeds up the convergence of the model, while maintaining accuracy. Experimental results of FCN show that FCN-2S provides a higher pixel recognition accuracy than other FCNs.



2020 ◽  
pp. 1-12
Author(s):  
Wu Xin ◽  
Qiu Daping

The inheritance and innovation of ancient architecture decoration art is an important way for the development of the construction industry. The data process of traditional ancient architecture decoration art is relatively backward, which leads to the obvious distortion of the digitalization of ancient architecture decoration art. In order to improve the digital effect of ancient architecture decoration art, based on neural network, this paper combines the image features to construct a neural network-based ancient architecture decoration art data system model, and graphically expresses the static construction mode and dynamic construction process of the architecture group. Based on this, three-dimensional model reconstruction and scene simulation experiments of architecture groups are realized. In order to verify the performance effect of the system proposed in this paper, it is verified through simulation and performance testing, and data visualization is performed through statistical methods. The result of the study shows that the digitalization effect of the ancient architecture decoration art proposed in this paper is good.



Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3046
Author(s):  
Shervin Minaee ◽  
Mehdi Minaei ◽  
Amirali Abdolrashidi

Facial expression recognition has been an active area of research over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG, and LBP, followed by a classifier trained on a database of images or videos. Most of these works perform reasonably well on datasets of images captured in a controlled condition but fail to perform as well on more challenging datasets with more image variation and partial faces. In recent years, several works proposed an end-to-end framework for facial expression recognition using deep learning models. Despite the better performance of these works, there are still much room for improvement. In this work, we propose a deep learning approach based on attentional convolutional network that is able to focus on important parts of the face and achieves significant improvement over previous models on multiple datasets, including FER-2013, CK+, FERG, and JAFFE. We also use a visualization technique that is able to find important facial regions to detect different emotions based on the classifier’s output. Through experimental results, we show that different emotions are sensitive to different parts of the face.





2018 ◽  
Vol 10 (8) ◽  
pp. 1243 ◽  
Author(s):  
Xu Tang ◽  
Xiangrong Zhang ◽  
Fang Liu ◽  
Licheng Jiao

Due to the specific characteristics and complicated contents of remote sensing (RS) images, remote sensing image retrieval (RSIR) is always an open and tough research topic in the RS community. There are two basic blocks in RSIR, including feature learning and similarity matching. In this paper, we focus on developing an effective feature learning method for RSIR. With the help of the deep learning technique, the proposed feature learning method is designed under the bag-of-words (BOW) paradigm. Thus, we name the obtained feature deep BOW (DBOW). The learning process consists of two parts, including image descriptor learning and feature construction. First, to explore the complex contents within the RS image, we extract the image descriptor in the image patch level rather than the whole image. In addition, instead of using the handcrafted feature to describe the patches, we propose the deep convolutional auto-encoder (DCAE) model to deeply learn the discriminative descriptor for the RS image. Second, the k-means algorithm is selected to generate the codebook using the obtained deep descriptors. Then, the final histogrammic DBOW features are acquired by counting the frequency of the single code word. When we get the DBOW features from the RS images, the similarities between RS images are measured using L1-norm distance. Then, the retrieval results can be acquired according to the similarity order. The encouraging experimental results counted on four public RS image archives demonstrate that our DBOW feature is effective for the RSIR task. Compared with the existing RS image features, our DBOW can achieve improved behavior on RSIR.



Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 828
Author(s):  
Wai Lun Lo ◽  
Henry Shu Hung Chung ◽  
Hong Fu

Estimation of Meteorological visibility from image characteristics is a challenging problem in the research of meteorological parameters estimation. Meteorological visibility can be used to indicate the weather transparency and this indicator is important for transport safety. This paper summarizes the outcomes of the experimental evaluation of a Particle Swarm Optimization (PSO) based transfer learning method for meteorological visibility estimation method. This paper proposes a modified approach of the transfer learning method for visibility estimation by using PSO feature selection. Image data are collected at fixed location with fixed viewing angle. The database images were gone through a pre-processing step of gray-averaging so as to provide information of static landmark objects for automatic extraction of effective regions from images. Effective regions are then extracted from image database and the image features are then extracted from the Neural Network. Subset of Image features are selected based on the Particle Swarming Optimization (PSO) methods to obtain the image feature vectors for each effective sub-region. The image feature vectors are then used to estimate the visibilities of the images by using the Multiple Support Vector Regression (SVR) models. Experimental results show that the proposed method can give an accuracy more than 90% for visibility estimation and the proposed method is effective and robust.



2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yinghao Chu ◽  
Chen Huang ◽  
Xiaodan Xie ◽  
Bohai Tan ◽  
Shyam Kamal ◽  
...  

This study proposes a multilayer hybrid deep-learning system (MHS) to automatically sort waste disposed of by individuals in the urban public area. This system deploys a high-resolution camera to capture waste image and sensors to detect other useful feature information. The MHS uses a CNN-based algorithm to extract image features and a multilayer perceptrons (MLP) method to consolidate image features and other feature information to classify wastes as recyclable or the others. The MHS is trained and validated against the manually labelled items, achieving overall classification accuracy higher than 90% under two different testing scenarios, which significantly outperforms a reference CNN-based method relying on image-only inputs.



Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5136
Author(s):  
Xiaoxin Fang ◽  
Qiwu Luo ◽  
Bingxing Zhou ◽  
Congcong Li ◽  
Lu Tian

The computer-vision-based surface defect detection of metal planar materials is a research hotspot in the field of metallurgical industry. The high standard of planar surface quality in the metal manufacturing industry requires that the performance of an automated visual inspection system and its algorithms are constantly improved. This paper attempts to present a comprehensive survey on both two-dimensional and three-dimensional surface defect detection technologies based on reviewing over 160 publications for some typical metal planar material products of steel, aluminum, copper plates and strips. According to the algorithm properties as well as the image features, the existing two-dimensional methodologies are categorized into four groups: statistical, spectral, model, and machine learning-based methods. On the basis of three-dimensional data acquisition, the three-dimensional technologies are divided into stereoscopic vision, photometric stereo, laser scanner, and structured light measurement methods. These classical algorithms and emerging methods are introduced, analyzed, and compared in this review. Finally, the remaining challenges and future research trends of visual defect detection are discussed and forecasted at an abstract level.



2020 ◽  
Vol 24 (4) ◽  
pp. 2061-2081 ◽  
Author(s):  
Xudong Zhou ◽  
Jan Polcher ◽  
Tao Yang ◽  
Ching-Sheng Huang

Abstract. Ensemble estimates based on multiple datasets are frequently applied once many datasets are available for the same climatic variable. An uncertainty estimate based on the difference between the ensemble datasets is always provided along with the ensemble mean estimate to show to what extent the ensemble members are consistent with each other. However, one fundamental flaw of classic uncertainty estimates is that only the uncertainty in one dimension (either the temporal variability or the spatial heterogeneity) can be considered, whereas the variation along the other dimension is dismissed due to limitations in algorithms for classic uncertainty estimates, resulting in an incomplete assessment of the uncertainties. This study introduces a three-dimensional variance partitioning approach and proposes a new uncertainty estimation (Ue) that includes the data uncertainties in both spatiotemporal scales. The new approach avoids pre-averaging in either of the spatiotemporal dimensions and, as a result, the Ue estimate is around 20 % higher than the classic uncertainty metrics. The deviation of Ue from the classic metrics is apparent for regions with strong spatial heterogeneity and where the variations significantly differ in temporal and spatial scales. This shows that classic metrics underestimate the uncertainty through averaging, which means a loss of information in the variations across spatiotemporal scales. Decomposing the formula for Ue shows that Ue has integrated four different variations across the ensemble dataset members, while only two of the components are represented in the classic uncertainty estimates. This analysis of the decomposition explains the correlation as well as the differences between the newly proposed Ue and the two classic uncertainty metrics. The new approach is implemented and analysed with multiple precipitation products of different types (e.g. gauge-based products, merged products and GCMs) which contain different sources of uncertainties with different magnitudes. Ue of the gauge-based precipitation products is the smallest, while Ue of the other products is generally larger because other uncertainty sources are included and the constraints of the observations are not as strong as in gauge-based products. This new three-dimensional approach is flexible in its structure and particularly suitable for a comprehensive assessment of multiple datasets over large regions within any given period.



2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Jamyson Oliveira Santos ◽  
Brunna da Silva Firmino ◽  
Matheus Santos Carvalho ◽  
Jean de Pinho Mendes ◽  
Lucas Novaes Teixeira ◽  
...  

Imaging examinations play an important role in the diagnosis of sialolithiasis, whose symptoms are initially confounded with other diseases. The objective of the present case report is to highlight imaging and processing techniques as well as image analysis for the preoperative assessment and planning of surgical interventions and adequate treatment of massive sialoliths. A 35-year-old male patient presented complaining of pain in the submandibular region and purulent secretions from a lingual caruncle with slightly increased volume in the region. Imaging examinations were ordered as follows: cone beam computed tomography, ultrasonography, and three-dimensional reconstruction, including clinical evaluation. A final diagnosis of sialolithiasis was established. Surgery was indicated and carried out by using a lateral transcervical approach for complete resection of the gland, which was based on the calculation of the total volume of the sialolith, thus increasing the surgery’s success.



Sign in / Sign up

Export Citation Format

Share Document