scholarly journals Superiority of Supervised Machine Learning on Reading Chest X-Rays in Intensive Care Units

2021 ◽  
Vol 8 ◽  
Author(s):  
Kumiko Tanaka ◽  
Taka-aki Nakada ◽  
Nozomi Takahashi ◽  
Takahiro Dozono ◽  
Yuichiro Yoshimura ◽  
...  

Purpose: Portable chest radiographs are diagnostically indispensable in intensive care units (ICU). This study aimed to determine if the proposed machine learning technique increased in accuracy as the number of radiograph readings increased and if it was accurate in a clinical setting.Methods: Two independent data sets of portable chest radiographs (n = 380, a single Japanese hospital; n = 1,720, The National Institution of Health [NIH] ChestX-ray8 dataset) were analyzed. Each data set was divided training data and study data. Images were classified as atelectasis, pleural effusion, pneumonia, or no emergency. DenseNet-121, as a pre-trained deep convolutional neural network was used and ensemble learning was performed on the best-performing algorithms. Diagnostic accuracy and processing time were compared to those of ICU physicians.Results: In the single Japanese hospital data, the area under the curve (AUC) of diagnostic accuracy was 0.768. The area under the curve (AUC) of diagnostic accuracy significantly improved as the number of radiograph readings increased from 25 to 100% in the NIH data set. The AUC was higher than 0.9 for all categories toward the end of training with a large sample size. The time to complete 53 radiographs by machine learning was 70 times faster than the time taken by ICU physicians (9.66 s vs. 12 min). The diagnostic accuracy was higher by machine learning than by ICU physicians in most categories (atelectasis, AUC 0.744 vs. 0.555, P < 0.05; pleural effusion, 0.856 vs. 0.706, P < 0.01; pneumonia, 0.720 vs. 0.744, P = 0.88; no emergency, 0.751 vs. 0.698, P = 0.47).Conclusions: We developed an automatic detection system for portable chest radiographs in ICU setting; its performance was superior and quite faster than ICU physicians.

2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2019 ◽  
Author(s):  
Longxiang Su ◽  
Chun Liu ◽  
Dongkai Li ◽  
Jie He ◽  
Fanglan Zheng ◽  
...  

BACKGROUND Heparin is one of the most commonly used medications in intensive care units. In clinical practice, the use of a weight-based heparin dosing nomogram is standard practice for the treatment of thrombosis. Recently, machine learning techniques have dramatically improved the ability of computers to provide clinical decision support and have allowed for the possibility of computer generated, algorithm-based heparin dosing recommendations. OBJECTIVE The objective of this study was to predict the effects of heparin treatment using machine learning methods to optimize heparin dosing in intensive care units based on the predictions. Patient state predictions were based upon activated partial thromboplastin time in 3 different ranges: subtherapeutic, normal therapeutic, and supratherapeutic, respectively. METHODS Retrospective data from 2 intensive care unit research databases (Multiparameter Intelligent Monitoring in Intensive Care III, MIMIC-III; e–Intensive Care Unit Collaborative Research Database, eICU) were used for the analysis. Candidate machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic, normal therapeutic, and supratherapeutic patient states. The model results were evaluated using precision, recall, F1 score, and accuracy. RESULTS Data from the MIMIC-III database (n=2789 patients) and from the eICU database (n=575 patients) were used. In 3-class classification, the shallow neural network algorithm performed the best (F1 scores of 87.26%, 85.98%, and 87.55% for data set 1, 2, and 3, respectively). The shallow neural network algorithm achieved the highest F1 scores within the patient therapeutic state groups: subtherapeutic (data set 1: 79.35%; data set 2: 83.67%; data set 3: 83.33%), normal therapeutic (data set 1: 93.15%; data set 2: 87.76%; data set 3: 84.62%), and supratherapeutic (data set 1: 88.00%; data set 2: 86.54%; data set 3: 95.45%) therapeutic ranges, respectively. CONCLUSIONS The most appropriate model for predicting the effects of heparin treatment was found by comparing multiple machine learning models and can be used to further guide optimal heparin dosing. Using multicenter intensive care unit data, our study demonstrates the feasibility of predicting the outcomes of heparin treatment using data-driven methods, and thus, how machine learning–based models can be used to optimize and personalize heparin dosing to improve patient safety. Manual analysis and validation suggested that the model outperformed standard practice heparin treatment dosing.


1997 ◽  
Vol 25 (5) ◽  
pp. 801-805 ◽  
Author(s):  
Ada Brainsky ◽  
Robert H. Fletcher ◽  
Henry A. Glick ◽  
Paul N. Lanken ◽  
Sankey V. Williams ◽  
...  

2020 ◽  
Author(s):  
Rebecca O'Donovan ◽  
Emre Sezgin ◽  
Sven Bambach ◽  
Eric Butter ◽  
Simon Lin

BACKGROUND Qualitative self- or parent-reports used in assessing children’s behavioral disorders are often inconvenient to collect and can be misleading due to missing information, rater biases, and limited validity. A data-driven approach to quantify behavioral disorders could alleviate these concerns. This study proposes a machine learning approach to identify screams in voice recordings that avoids the need to gather large amounts of clinical data for model training. OBJECTIVE The goal of this study is to evaluate if a machine learning model trained only on publicly available audio data sets could be used to detect screaming sounds in audio streams captured in an at-home setting. METHODS Two sets of audio samples were prepared to evaluate the model: a subset of the publicly available AudioSet data set and a set of audio data extracted from the TV show Supernanny, which was chosen for its similarity to clinical data. Scream events were manually annotated for the Supernanny data, and existing annotations were refined for the AudioSet data. Audio feature extraction was performed with a convolutional neural network pretrained on AudioSet. A gradient-boosted tree model was trained and cross-validated for scream classification on the AudioSet data and then validated independently on the Supernanny audio. RESULTS On the held-out AudioSet clips, the model achieved a receiver operating characteristic (ROC)–area under the curve (AUC) of 0.86. The same model applied to three full episodes of Supernanny audio achieved an ROC-AUC of 0.95 and an average precision (positive predictive value) of 42% despite screams only making up 1.3% (n=92/7166 seconds) of the total run time. CONCLUSIONS These results suggest that a scream-detection model trained with publicly available data could be valuable for monitoring clinical recordings and identifying tantrums as opposed to depending on collecting costly privacy-protected clinical data for model training.


2020 ◽  
Vol 29 (4) ◽  
pp. e70-e80
Author(s):  
Mireia Ladios-Martin ◽  
José Fernández-de-Maya ◽  
Francisco-Javier Ballesta-López ◽  
Adrián Belso-Garzas ◽  
Manuel Mas-Asencio ◽  
...  

Background Pressure injuries are an important problem in hospital care. Detecting the population at risk for pressure injuries is the first step in any preventive strategy. Available tools such as the Norton and Braden scales do not take into account all of the relevant risk factors. Data mining and machine learning techniques have the potential to overcome this limitation. Objectives To build a model to detect pressure injury risk in intensive care unit patients and to put the model into production in a real environment. Methods The sample comprised adult patients admitted to an intensive care unit (N = 6694) at University Hospital of Torrevieja and University Hospital of Vinalopó. A retrospective design was used to train (n = 2508) and test (n = 1769) the model and then a prospective design was used to test the model in a real environment (n = 2417). Data mining was used to extract variables from electronic medical records and a predictive model was built with machine learning techniques. The sensitivity, specificity, area under the curve, and accuracy of the model were evaluated. Results The final model used logistic regression and incorporated 23 variables. The model had sensitivity of 0.90, specificity of 0.74, and area under the curve of 0.89 during the initial test, and thus it outperformed the Norton scale. The model performed well 1 year later in a real environment. Conclusions The model effectively predicts risk of pressure injury. This allows nurses to focus on patients at high risk for pressure injury without increasing workload.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5047
Author(s):  
Santiago Cepeda ◽  
Angel Pérez-Nuñez ◽  
Sergio García-García ◽  
Daniel García-Pérez ◽  
Ignacio Arrese ◽  
...  

Radiomics, in combination with artificial intelligence, has emerged as a powerful tool for the development of predictive models in neuro-oncology. Our study aims to find an answer to a clinically relevant question: is there a radiomic profile that can identify glioblastoma (GBM) patients with short-term survival after complete tumor resection? A retrospective study of GBM patients who underwent surgery was conducted in two institutions between January 2019 and January 2020, along with cases from public databases. Cases with gross total or near total tumor resection were included. Preoperative structural multiparametric magnetic resonance imaging (mpMRI) sequences were pre-processed, and a total of 15,720 radiomic features were extracted. After feature reduction, machine learning-based classifiers were used to predict early mortality (<6 months). Additionally, a survival analysis was performed using the random survival forest (RSF) algorithm. A total of 203 patients were enrolled in this study. In the classification task, the naive Bayes classifier obtained the best results in the test data set, with an area under the curve (AUC) of 0.769 and classification accuracy of 80%. The RSF model allowed the stratification of patients into low- and high-risk groups. In the test data set, this model obtained values of C-Index = 0.61, IBS = 0.123 and integrated AUC at six months of 0.761. In this study, we developed a reliable predictive model of short-term survival in GBM by applying open-source and user-friendly computational means. These new tools will assist clinicians in adapting our therapeutic approach considering individual patient characteristics.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ximing Nie ◽  
Yuan Cai ◽  
Jingyi Liu ◽  
Xiran Liu ◽  
Jiahui Zhao ◽  
...  

Objectives: This study aims to investigate whether the machine learning algorithms could provide an optimal early mortality prediction method compared with other scoring systems for patients with cerebral hemorrhage in intensive care units in clinical practice.Methods: Between 2008 and 2012, from Intensive Care III (MIMIC-III) database, all cerebral hemorrhage patients monitored with the MetaVision system and admitted to intensive care units were enrolled in this study. The calibration, discrimination, and risk classification of predicted hospital mortality based on machine learning algorithms were assessed. The primary outcome was hospital mortality. Model performance was assessed with accuracy and receiver operating characteristic curve analysis.Results: Of 760 cerebral hemorrhage patients enrolled from MIMIC database [mean age, 68.2 years (SD, ±15.5)], 383 (50.4%) patients died in hospital, and 377 (49.6%) patients survived. The area under the receiver operating characteristic curve (AUC) of six machine learning algorithms was 0.600 (nearest neighbors), 0.617 (decision tree), 0.655 (neural net), 0.671(AdaBoost), 0.819 (random forest), and 0.725 (gcForest). The AUC was 0.423 for Acute Physiology and Chronic Health Evaluation II score. The random forest had the highest specificity and accuracy, as well as the greatest AUC, showing the best ability to predict in-hospital mortality.Conclusions: Compared with conventional scoring system and the other five machine learning algorithms in this study, random forest algorithm had better performance in predicting in-hospital mortality for cerebral hemorrhage patients in intensive care units, and thus further research should be conducted on random forest algorithm.


Sign in / Sign up

Export Citation Format

Share Document