scholarly journals Development and Functional Characterization of Fetal Lung Organoids

2021 ◽  
Vol 8 ◽  
Author(s):  
Mandy Laube ◽  
Soeren Pietsch ◽  
Thomas Pannicke ◽  
Ulrich H. Thome ◽  
Claire Fabian

Preterm infants frequently suffer from pulmonary complications due to a physiological and structural lung immaturity resulting in significant morbidity and mortality. Novel in vitro and in vivo models are required to study the underlying mechanisms of late lung maturation and to facilitate the development of new therapeutic strategies. Organoids recapitulate essential aspects of structural organization and possibly organ function, and can be used to model developmental and disease processes. We aimed at generating fetal lung organoids (LOs) and to functionally characterize this in vitro model in comparison to primary lung epithelial cells and lung explants ex vivo. LOs were generated with alveolar and endothelial cells from fetal rat lung tissue, using a Matrigel-gradient and air-liquid-interface culture conditions. Immunocytochemical analysis showed that the LOs consisted of polarized epithelial cell adhesion molecule (EpCAM)-positive cells with the apical membrane compartment facing the organoid lumen. Expression of the alveolar type 2 cell marker, RT2-70, and the Club cell marker, CC-10, were observed. Na+ transporter and surfactant protein mRNA expression were detected in the LOs. First time patch clamp analyses demonstrated the presence of several ion channels with specific electrophysiological properties, comparable to vital lung slices. Furthermore, the responsiveness of LOs to glucocorticoids was demonstrated. Finally, maturation of LOs induced by mesenchymal stem cells confirmed the convenience of the model to test and establish novel therapeutic strategies. The results showed that fetal LOs replicate key biological lung functions essential for lung maturation and therefore constitute a suitable in vitro model system to study lung development and related diseases.

1982 ◽  
Vol 52 (6) ◽  
pp. 1420-1425 ◽  
Author(s):  
I. Gross ◽  
C. M. Wilson

Corticosteroids, thyroid hormones, and theophylline have previously been shown to accelerate fetal lung maturation. We have examined the interactions between these agents in relation to phospholipid synthesis in explants of 18-day fetal rat lung in organ culture. Maximal stimulation of the rate of incorporation of choline into phosphatidylcholine, the most abundant phospholipid in pulmonary surfactant, was observed at a dexamethasone concentration of 100 nM. Exposure to 100 nM dexamethasone, 1.0 mM theophylline, or a combination of the two agents for 48 h resulted, respectively, in 144, 157, and 508% stimulation of the rate of incorporation of choline into disaturated phosphatidylcholine. Similar supra-additive interactions between dexamethasone and dibutyryl adenosine 3′,5′-cyclic monophosphate (cAMP) were observed, but the effects with caffeine were less striking. The increase in the rate of precursor incorporation was associated with a significant increase in the disaturated phosphatidylcholine content of the cultures. Combination of dexamethasone with 100 nM triiodothyronine (the concn producing maximal effects) also resulted in supra-additive stimulation but to a smaller degree. These findings of interactions in vitro suggest that the agents act on the lung at different biochemical sites, but the mechanisms whereby they interact at the cellular level have yet to be established. The data provide a rationale for in vivo animal studies of the effects of combined hormone administration on fetal lung maturation.


2000 ◽  
Vol 89 (5) ◽  
pp. 2078-2084 ◽  
Author(s):  
Mingyao Liu ◽  
Martin Post

Growth and maturation of fetal lungs are regulated by both humoral and physical factors. Mechanical stretch stimulates fetal lung cell proliferation and affects fetal lung maturation by influencing the production of extracellular matrix molecules and the expression of specific genes of fetal lung cells. These effects are mediated through special signal transduction pathways in fetal lung cells. Various in vivo and in vitro model systems have been developed to investigate the mechanotransduction process. The diversity and discrepancy of these studies have raised many questions. We will briefly summarize mechanical force-induced signals in fetal lung cell proliferation and differentiation and then discuss several important issues related to these studies.


Author(s):  
Tram Mai Nguyen ◽  
Johannes van der Merwe ◽  
Linda Elowsson Rendin ◽  
Anna-Karin Larsson-Callerfelt ◽  
Jan Deprest ◽  
...  

Accurate fluid pressure in the fetal lung is critical for its development, especially at the beginning of the saccular stage when alveolar epithelial type 1 (AT1) and type 2 (AT2) cells differentiate from the epithelial progenitors. Despite our growing understanding of the role of physical forces in lung development, the molecular mechanisms that regulate the transduction of mechanical stretch to alveolar differentiation remain elusive. To simulate lung distension, we optimized both an ex vivo model with precision cut lung slices and an in vivo model of fetal tracheal occlusion. Increased mechanical tension showed to improve alveolar maturation and differentiation towards AT1. By manipulating ROCK pathway, we demonstrate that stretch-induced Yap/Taz activation promotes alveolar differentiation towards AT1 phenotype via ROCK activity. Our findings show that balanced ROCK-Yap/Taz signaling is essential to regulate AT1 differentiation in response to mechanical stretching of the fetal lung, which might be helpful in improving lung development and regeneration.


Blood ◽  
2011 ◽  
Vol 118 (8) ◽  
pp. 2105-2115 ◽  
Author(s):  
Elisa Ciraci ◽  
Silvia Della Bella ◽  
Ombretta Salvucci ◽  
Cristina Rofani ◽  
Marta Segarra ◽  
...  

Abstract A precise identification of adult human hemangioblast is still lacking. To identify circulating precursors having the developmental potential of the hemangioblast, we established a new ex vivo long-term culture model supporting the differentiation of both hematopoietic and endothelial cell lineages. We identified from peripheral blood a population lacking the expression of CD34, lineage markers, CD45 and CD133 (CD34−Lin−CD45−CD133− cells), endowed with the ability to differentiate after a 6-week culture into both hematopoietic and endothelial lineages. The bilineage potential of CD34−Lin−CD45−CD133− cells was determined at the single-cell level in vitro and was confirmed by transplantation into NOD/SCID mice. In vivo, CD34−Lin−CD45−CD133− cells showed the ability to reconstitute hematopoietic tissue and to generate functional endothelial cells that contribute to new vessel formation during tumor angiogenesis. Molecular characterization of CD34−Lin−CD45−CD133− cells unveiled a stem cell profile compatible with both hematopoietic and endothelial potentials, characterized by the expression of c-Kit and CXCR4 as well as EphB4, EphB2, and ephrinB2. Further molecular and functional characterization of CD34−Lin−CD45−CD133− cells will help dissect their physiologic role in blood and blood vessel maintenance and repair in adult life.


1995 ◽  
Vol 7 (3) ◽  
pp. 443 ◽  
Author(s):  
GC Liggins

Clinical trials of thyrotrophin-releasing hormone (TRH) in conjunction with antepartum glucocorticoid treatment in the prevention of respiratory distress syndrome is based on experimental evidence that fetal lung maturation is accelerated by exposure to raised concentrations of triiodothyronine (T3) in fetal plasma. Studies of fetal rat and rabbit lung in vitro show an inconsistent increase in surfactant synthesis in response to T3 and potentiation of the response to corticosteroid. Experiments with fetal rodents in vivo are difficult to interpret because of confounding effects of the procedures and the responses to T3 are variable. In fetal sheep, very high concentrations of T3 are without effect on lung maturation. These observations suggest that the action of TRH on the lung may be mediated at least in part by one of the numerous, non-hormonal pathways known to be stimulated by TRH, particularly the autonomic nervous system. Experiments in rats and sheep lend support to this possibility. It is concluded that available evidence is inadequate to determine the mechanism of action of TRH.


2003 ◽  
Vol 284 (5) ◽  
pp. L817-L825 ◽  
Author(s):  
Xiaoping Luo ◽  
Rosetta Belcastro ◽  
Judy Cabacungan ◽  
Vicky Hannam ◽  
Anna Negus ◽  
...  

We hypothesized that constitutive formation of reactive oxygen species by respiratory cells is a barrier to gene transfer when liposome-DNA complexes are used, by contributing to rapid degradation of plasmid DNA. When plasmid DNA is complexed to liposomes it is protected against H2O2-mediated degradation but not that mediated by the hydroxyl radical. Treatment of distal rat fetal lung epithelial cells (RFL19Ep) with the vitamin E analog Trolox (50 μM) reduced intracellular plasmid degradation. Both Trolox (50 μM) and an iron chelator, phenanthroline (0.1 μM), significantly increased transgene expression in RFL19Ep approximately twofold, consistent with a hydroxyl radical-mediated inhibition of transgene expression. When basic fibroblast growth factor (bFGF; 20 ng/ml), a growth factor with antioxidant properties, was included within liposomes, we observed a significantly greater enhancement of RFL19Ep transgene expression (∼2-fold) over that seen with Trolox or phenanthroline. Inclusion of bFGF within liposomes also significantly enhanced (∼4-fold) transgene expression in mice following intratracheal instillation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Konstantinos Gkatzis ◽  
Paolo Panza ◽  
Sofia Peruzzo ◽  
Didier YR Stainier

Lung epithelial progenitors differentiate into alveolar type 1 (AT1) and type 2 (AT2) cells. These cells form the air-blood interface and secrete surfactant, respectively, and are essential for lung maturation and function. Current protocols to derive and culture alveolar cells do not faithfully recapitulate the architecture of the distal lung, which influences cell fate patterns in vivo. Here, we report serum-free conditions that allow for growth and differentiation of mouse distal lung epithelial progenitors. We find that Collagen I promotes the differentiation of flattened, polarized AT1 cells. Using these organoids, we performed a chemical screen to investigate WNT signaling in epithelial differentiation. We identify an association between Casein Kinase activity and maintenance of an AT2 expression signature; Casein Kinase inhibition leads to an increase in AT1/progenitor cell ratio. These organoids provide a simplified model of alveolar differentiation and constitute a scalable screening platform to identify and analyze cell differentiation mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Analuce Canha-Gouveia ◽  
Maria Teresa Prieto-Sánchez ◽  
Maria Luisa Sánchez-Ferrer ◽  
Marta Mollá ◽  
Juan Carlos Martínez-Soto ◽  
...  

Culture media supplemented with reproductive fluids (RF) have been used in livestock species, improving the efficiency and quality of in vitro produced embryos. However, usefulness in humans is still unknown. In this study, we collected human reproductive fluids (HRFs) ex vivo (from 25 patients undergoing abdominal hysterectomy plus bilateral salpingectomy) and in vivo (from 31 oocyte donors). Afterward, protocols to evaluate their osmolality, pH, total protein concentration, endotoxin level, and sterility were optimized, establishing security ranges for their use as natural additives. In addition, a functional assay was developed with bovine embryos grown in vitro in a medium supplemented with 1% of collected HRFs. Finally, a proof of concept was performed with six patients on post ovulation day 2 to evaluate the full-term viability of embryos grown in media supplemented with autologous uterine fluid, collected under in vivo conditions. Two of the embryos resulted in successful pregnancy and delivery of healthy babies. In conclusion, this study establishes a complete quality control sheet of HRFs as additives for embryo culture media and shows first preliminary data on obtaining healthy offspring derived from embryos grown in media supplemented with HRFs.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document