scholarly journals Diverse Internal Symbiont Community in the Endosymbiotic Foraminifera Pararotalia calcariformata: Implications for Symbiont Shuffling Under Thermal Stress

2018 ◽  
Vol 9 ◽  
Author(s):  
Christiane Schmidt ◽  
Raphael Morard ◽  
Oscar Romero ◽  
Michal Kucera
2021 ◽  
Author(s):  
Javier A. Rodriguez‐Casariego ◽  
Ross Cunning ◽  
Andrew C. Baker ◽  
Jose M. Eirin‐Lopez

2018 ◽  
Author(s):  
Wentao Qin ◽  
Scott Donaldson ◽  
Dan Rogers ◽  
Lahcen Boukhanfra ◽  
Julien Thiefain ◽  
...  

Abstract Many semiconductor products are manufactured with mature technologies involving the uses of aluminum (Al) lines and tungsten (W) vias. High resistances of the vias were sometimes observed only after electrical or thermal stress. A layer of Ti oxide was found on such a via. In the wafer processing, the post W chemical mechanical planarization (WCMP) cleaning left residual W oxide on the W plugs. Ti from the overlaying metal line spontaneously reduced the W oxide, through which Ti oxide formed. Compared with W oxide, the Ti oxide has a larger formation enthalpy, and the valence electrons of Ti are more tightly bound to the O ion cores. As a result, the Ti oxide is more resistive than the W oxide. Consequently, the die functioned well in the first test in the fab, but the via resistance increased significantly after a thermal stress, which led to device failure in the second test. The NH4OH concentration was therefore increased to more effectively remove residual W oxide, which solved the problem. The thermal stress had prevented the latent issue from becoming a more costly field failure.


Author(s):  
Michael Hertl ◽  
Diane Weidmann ◽  
Alex Ngai

Abstract A new approach to reliability improvement and failure analysis on ICs is introduced, involving a specifically developed tool for Topography and Deformation Measurement (TDM) under thermal stress conditions. Applications are presented including delamination risk or bad solderability assessment on BGAs during JEDEC type reflow cycles.


2003 ◽  
Vol 86 (1-2) ◽  
pp. 139-156 ◽  
Author(s):  
Robin J. Rowbury

Biological thermometers are cellular components or structures which sense increasing temperatures, interaction of the thermometer and the thermal stress bringing about the switching-on of inducible responses, with gradually enhanced levels of response induction following gradually increasing temperatures. In enterobacteria, for studies of such thermometers, generally induction of heat shock protein (HSP) synthesis has been examined, with experimental studies aiming to establish (often indirectly) how the temperature changes which initiate HSP synthesis are sensed; numerous other processes and responses show graded induction as temperature is increased, and how the temperature changes which induce these are sensed is also of interest. Several classes of intracellular component and structure have been proposed as enterobacterial thermometers, with the ribosome and the DnaK chaperone being the most favoured, although for many of the proposed intracellular thermometers, most of the evidence for their functioning in this way is indirect. In contrast to the above, the studies reviewed here firmly establish that for four distinct stress responses, which are switched-on gradually as temperature increases, temperature changes are sensed by extracellular components (extracellular sensing components, ESCs) i.e. there is firm and direct evidence for the occurrence of extracellular thermometers. All four thermometers described here are proteins, which appear to be distinct and different from each other, and on sensing thermal stress are activated by it to four distinct extracellular induction components (EICs), which interact with receptors on the surface of organisms to induce the appropriate responses. It is predicted that many other temperature-induced processes, including the synthesis of HSPs, will be switched-on following the activation of similar extracellular thermometers by thermal stimuli.


Sign in / Sign up

Export Citation Format

Share Document