scholarly journals AmrZ Regulates Swarming Motility Through Cyclic di-GMP-Dependent Motility Inhibition and Controlling Pel Polysaccharide Production in Pseudomonas aeruginosa PA14

2019 ◽  
Vol 10 ◽  
Author(s):  
Lingli Hou ◽  
Alexander Debru ◽  
Qianqian Chen ◽  
Qiyu Bao ◽  
Kewei Li
2014 ◽  
Vol 197 (3) ◽  
pp. 406-409 ◽  
Author(s):  
Linda L. McCarter ◽  
Mark Gomelsky

There are numerous ways by which cyclic dimeric GMP (c-di-GMP) inhibits motility. Kuchma et al. (S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, and G. A. O'Toole, J. Bacteriol. 197:420–430, 2015,http://dx.doi.org/10.1128/JB.02130-14) offer a new, previously unseen way of swarming motility inhibition inPseudomonas aeruginosaPA14. This bacterium possesses a single flagellum with one rotor and two sets of stators, only one of which can provide torque for swarming. The researchers discovered that elevated levels of c-di-GMP inhibit swarming by skewing stator selection in favor of the nonfunctional, “bad” stators.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Ana Mafalda Pinto ◽  
Alberta Faustino ◽  
Lorenzo M. Pastrana ◽  
Manuel Bañobre-López ◽  
Sanna Sillankorva

Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.


2008 ◽  
Vol 190 (18) ◽  
pp. 6217-6227 ◽  
Author(s):  
Haihua Liang ◽  
Lingling Li ◽  
Zhaolin Dong ◽  
Michael G. Surette ◽  
Kangmin Duan

ABSTRACT Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR ( p qsR-mediated P QS r egulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.


2013 ◽  
Vol 57 (10) ◽  
pp. 4877-4881 ◽  
Author(s):  
César de la Fuente-Núñez ◽  
Fany Reffuveille ◽  
Kathryn E. Fairfull-Smith ◽  
Robert E. W. Hancock

ABSTRACTThe ability of nitric oxide (NO) to induce biofilm dispersion has been well established. Here, we investigated the effect of nitroxides (sterically hindered nitric oxide analogues) on biofilm formation and swarming motility inPseudomonas aeruginosa. A transposon mutant unable to produce nitric oxide endogenously (nirS) was deficient in swarming motility relative to the wild type and the complemented strain. Moreover, expression of thenirSgene was upregulated by 9.65-fold in wild-type swarming cells compared to planktonic cells. Wild-type swarming levels were substantially restored upon the exogenous addition of nitroxide containing compounds, a finding consistent with the hypothesis that NO is necessary for swarming motility. Here, we showed that nitroxides not only mimicked the dispersal activity of NO but also prevented biofilms from forming in flow cell chambers. In addition, anirStransposon mutant was deficient in biofilm formation relative to the wild type and the complemented strain, thus implicating NO in the formation of biofilms. Intriguingly, despite its stand-alone action in inhibiting biofilm formation and promoting dispersal, a nitroxide partially restored the ability of anirSmutant to form biofilms.


Antibiotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 136 ◽  
Author(s):  
Pansong Zhang ◽  
Qiaolian Wu ◽  
Lin Chen ◽  
Kangmin Duan

Antipathogenic compounds that target the virulence of pathogenic bacteria rather than their viability offer a promising alternative approach to treat infectious diseases. Using extracts from 30 Chinese herbs that are known for treating symptoms resembling infections, we identified an active compound falcarindiol from Notopterygium incisum Ting ex H. T. Chang that showed potent inhibitory activities against Pseudomonas aeruginosa multiple virulence factors. Falcarindiol significantly repressed virulence-related genes, including the type III secretion system (T3SS); quorum sensing synthase genes lasIR and rhlIR; lasB; motility-related genes fliC and fliG; and phenazine synthesis genes phzA1 and phzA2. P. aeruginosa swarming motility and pyocyanin production were reduced significantly. In a burned mouse model, falcarindiol treatment significantly reduced the mortality in mice infected with P. aeruginosa, indicating that falcarindiol is a promising antipathogenic drug candidate for treating P. aeruginosa infections.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Edward Ntim Gasu ◽  
Hubert Senanu Ahor ◽  
Lawrence Sheringham Borquaye

Bacteria in biofilms are encased in an extracellular polymeric matrix that limits exposure of microbial cells to lethal doses of antimicrobial agents, leading to resistance. In Pseudomonas aeruginosa, biofilm formation is regulated by cell-to-cell communication, called quorum sensing. Quorum sensing facilitates a variety of bacterial physiological functions such as swarming motility and protease, pyoverdine, and pyocyanin productions. Peptide mix from the marine mollusc, Olivancillaria hiatula, has been studied for its antibiofilm activity against Pseudomonas aeruginosa. Microscopy and microtiter plate-based assays were used to evaluate biofilm inhibitory activities. Effect of the peptide mix on quorum sensing-mediated processes was also evaluated. Peptide mix proved to be a good antibiofilm agent, requiring less than 39 μg/mL to inhibit 50% biofilm formation. Micrographs obtained confirmed biofilm inhibition at 1/2 MIC whereas 2.5 mg/mL was required to degrade preformed biofilm. There was a marked attenuation in quorum sensing-mediated phenotypes as well. At 1/2 MIC of peptide, the expression of pyocyanin, pyoverdine, and protease was inhibited by 60%, 72%, and 54%, respectively. Additionally, swarming motility was repressed by peptide in a dose-dependent manner. These results suggest that the peptide mix from Olivancillaria hiatula probably inhibits biofilm formation by interfering with cell-to-cell communication in Pseudomonas aeruginosa.


2020 ◽  
Vol 128 (5) ◽  
pp. 1355-1365
Author(s):  
D. Lakshmanan ◽  
A. Harikrishnan ◽  
K. Jyoti ◽  
M. Idul Ali ◽  
K. Jeevaratnam

2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Jean-Louis Bru ◽  
Brandon Rawson ◽  
Calvin Trinh ◽  
Katrine Whiteson ◽  
Nina Molin Høyland-Kroghsbo ◽  
...  

ABSTRACT We investigate the effect of bacteriophage infection and antibiotic treatment on the coordination of swarming, a collective form of flagellum- and pilus-mediated motility in bacteria. We show that phage infection of the opportunistic bacterial pathogen Pseudomonas aeruginosa abolishes swarming motility in the infected subpopulation and induces the release of the Pseudomonas quinolone signaling molecule PQS, which repulses uninfected subpopulations from approaching the infected area. These mechanisms have the overall effect of limiting the infection to a subpopulation, which promotes the survival of the overall population. Antibiotic treatment of P. aeruginosa elicits the same response, abolishing swarming motility and repulsing approaching swarms away from the antibiotic-treated area through a PQS-dependent mechanism. Swarms are entirely repelled from the zone of antibiotic-treated P. aeruginosa, consistent with a form of antibiotic evasion, and are not repelled by antibiotics alone. PQS has multiple functions, including serving as a quorum-sensing molecule, activating an oxidative stress response, and regulating the release of virulence and host-modifying factors. We show that PQS serves additionally as a stress warning signal that causes the greater population to physically avoid cell stress. The stress response at the collective level observed here in P. aeruginosa is consistent with a mechanism that promotes the survival of bacterial populations. IMPORTANCE We uncover a phage- and antibiotic-induced stress response in the clinically important opportunistic pathogen Pseudomonas aeruginosa. Phage-infected P. aeruginosa subpopulations are isolated from uninfected subpopulations by the production of a stress-induced signal. Activation of the stress response by antibiotics causes P. aeruginosa to physically be repelled from the area containing antibiotics altogether, consistent with a mechanism of antibiotic evasion. The stress response observed here could increase P. aeruginosa resilience against antibiotic treatment and phage therapy in health care settings, as well as provide a simple evolutionary strategy to avoid areas containing stress.


Sign in / Sign up

Export Citation Format

Share Document