scholarly journals Endosphere Microbiome and Metabolic Differences Between the Spots and Green Parts of Tricyrtis macropoda Leaves

2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Wang ◽  
Huyin Cheng ◽  
Fan Chang ◽  
Le Zhao ◽  
Bin Wang ◽  
...  

BackgroundPlant leaves are important organs for photosynthesis and biological energy production. The leaves of Tricyrtis macropoda have an unusual spotted pattern. However, whether the spots of T. macropoda affect the plant microbiome and metabolites is unclear. In this study, we compared differences in the endosphere microbiome and plant metabolites in green parts and spots and the effects of spots on the photosynthesis of leaves.Methods16S/ITS sequences and metabolite spectra were obtained by high-throughput amplicon sequencing and ultra-high-performance liquid chromatography–high-resolution mass spectrometry, respectively. Changes in the diversity of the endophytic microbial community and metabolites were studied, and the effect of T. macropoda leaf spots on photosynthesis was examined by chlorophyll fluorescence.ResultsThe results showed that the relative abundance of Cercospora fungi in the leaf spots of T. macropoda was significantly higher than that in the green parts (P < 0.05) while Colletotrichum fungi showed low abundance in the spots. Alkaloid and ketone metabolites were decreased in the green parts compared with the spots, and amino acids, organic acids, lipids, and other compounds were increased in the green parts compared with the spots. A combined analysis of microbial communities and metabolites showed a significant correlation between the endophytic fungal communities and metabolite production. The changes in these metabolites may cause changes in local leaf color. In addition, we found that the spot areas of T. macropoda can be photosynthetically normal.ConclusionThis research showed the relationship between endophytic microorganisms and metabolites, and the findings advance our understanding of endophyte–plant interactions and provide a new direction for investigating the relationship between endophytes and phenotypes.

2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Carina D. Schönsee ◽  
Barbara F. Günthardt ◽  
Thomas D. Bucheli ◽  
...  

Abstract Background Substantial efforts have been made to monitor potentially hazardous anthropogenic contaminants in surface waters while for plant secondary metabolites (PSMs) almost no data on occurrence in the water cycle are available. These metabolites enter river waters through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation and might add to the biological activity of the chemical mixture. To reduce this data gap, we conducted a LC–HRMS target screening in river waters from two different catchments for 150 plant metabolites which were selected from a larger database considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. Results The screening revealed the presence of 12 out of 150 possibly toxic PSMs including coumarins (bergapten, scopoletin, fraxidin, esculetin and psoralen), a flavonoid (formononetin) and alkaloids (lycorine and narciclasine). The compounds narciclasine and lycorine were detected at concentrations up to 3 µg/L while esculetin and fraxidin occurred at concentrations above 1 µg/L. Nine compounds occurred at concentrations above 0.1 µg/L, the Threshold for Toxicological Concern (TTC) for non-genotoxic and non-endocrine disrupting chemicals in drinking water. Conclusions Our study provides an overview of potentially biologically active PSMs in surface waters and recommends their consideration in monitoring and risk assessment of water resources. This is currently hampered by a lack of effect data including toxicity to aquatic organisms, endocrine disruption and genotoxicity and demands for involvement of these compounds in biotesting.


Sign in / Sign up

Export Citation Format

Share Document