scholarly journals Targeting the Malaria Parasite cGMP-Dependent Protein Kinase to Develop New Drugs

2020 ◽  
Vol 11 ◽  
Author(s):  
David A. Baker ◽  
Alexios N. Matralis ◽  
Simon A. Osborne ◽  
Jonathan M. Large ◽  
Maria Penzo

The single-celled apicomplexan parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria each year. The selection of drug resistance has been a recurring theme over the decades with each new drug that is developed. It is therefore crucial that future generations of drugs are explored to tackle this major public health problem. Cyclic GMP (cGMP) signaling is one of the biochemical pathways that is being explored as a potential target for new antimalarial drugs. It has been shown that this pathway is essential for all of the key developmental stages of the complex malaria parasite life cycle. This gives hope that targeting cGMP signaling might give rise to drugs that treat disease, block its transmission and even prevent the establishment of infection. Here we review previous work that has been carried out to develop and optimize inhibitors of the cGMP-dependent protein kinase (PKG) which is a critical regulator of the malaria parasite life cycle.

2009 ◽  
Vol 9 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Helen M. Taylor ◽  
Louisa McRobert ◽  
Munira Grainger ◽  
Audrey Sicard ◽  
Anton R. Dluzewski ◽  
...  

ABSTRACT A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the malaria parasite was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the parasite life cycle, the stage that causes malaria pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage parasites allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for ≥6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum parasites expressing a compound 1-insensitive PfPKG. The mutant parasites were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against malaria.


2013 ◽  
Vol 9 (5) ◽  
pp. e1003344 ◽  
Author(s):  
Christine R. Collins ◽  
Fiona Hackett ◽  
Malcolm Strath ◽  
Maria Penzo ◽  
Chrislaine Withers-Martinez ◽  
...  

2009 ◽  
Vol 9 (Suppl 1) ◽  
pp. S2
Author(s):  
Louisa McRobert ◽  
Helen M Taylor ◽  
Cathy J Taylor ◽  
Wensheng Deng ◽  
Robert W Moon ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
David Rotella ◽  
John Siekierka ◽  
Purnima Bhanot

The primary effector of cGMP signaling in Plasmodium is the cGMP-dependent protein kinase (PKG). Work in human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei has provided biological validation of P. falciparum PKG (PfPKG) as a drug target for treating and/or protecting against malaria. PfPKG is essential in the asexual erythrocytic and sexual cycles as well as the pre-erythrocytic cycle. Medicinal chemistry efforts, both target-based and phenotype-based, have targeted PfPKG in the past few years. This review provides a brief overview of their results and challenges.


2020 ◽  
Vol 11 (1) ◽  
pp. 98-101 ◽  
Author(s):  
Shams Ul Mahmood ◽  
Huimin Cheng ◽  
Sreedhar R. Tummalapalli ◽  
Ramappa Chakrasali ◽  
Rammohan R. Yadav Bheemanaboina ◽  
...  

The cGMP-dependent protein kinase in Plasmodium falciparum (PfPKG) plays multiple roles in the life cycle of the parasite.


2015 ◽  
Vol 308 (11) ◽  
pp. C944-C958 ◽  
Author(s):  
Shin Kato ◽  
Jingsi Chen ◽  
Katherine H. Cornog ◽  
Huili Zhang ◽  
Jesse D. Roberts

cGMP-dependent protein kinase I (PKGI) is an important effector of cGMP signaling that regulates vascular smooth muscle cell (SMC) phenotype and proliferation. PKGI has been detected in the perinuclear region of cells, and recent data indicate that proprotein convertases (PCs) typically resident in the Golgi apparatus (GA) can stimulate PKGI proteolysis and generate a kinase fragment that localizes to the nucleus and regulates gene expression. However, the role of the endomembrane system in PKGI compartmentation and processing is unknown. Here, we demonstrate that PKGI colocalizes with endoplasmic reticulum (ER), ER-Golgi intermediate compartment, GA cisterna, and trans-Golgi network proteins in pulmonary artery SMC and cell lines. Moreover, PKGI localizes with furin, a trans-Golgi network-resident PC known to cleave PKGI. ER protein transport influences PKGI localization because overexpression of a constitutively inactive Sar1 transgene caused PKGI retention in the ER. Additionally, PKGI appears to reside within the GA because PKGI immunoreactivity was determined to be resistant to cytosolic proteinase K treatment in live cells. The GA appears to play a role in PKGI proteolysis because overexpression of inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate, not only tethered heterologous PKGI-β to the ER and decreased its localization to the GA, but also diminished PKGI proteolysis and nuclear translocation. Also, inhibiting intra-GA protein transport with monensin was observed to decrease PKGI cleavage. These studies detail a role for the endomembrane system in regulating PKGI compartmentation and proteolysis. Moreover, they support the investigation of mechanisms regulating PKGI-dependent nuclear cGMP signaling in the pulmonary vasculature with Golgi dysfunction.


Hypertension ◽  
1996 ◽  
Vol 27 (3) ◽  
pp. 552-557 ◽  
Author(s):  
Naohisa Tamura ◽  
Hiroshi Itoh ◽  
Yoshihiro Ogawa ◽  
Osamu Nakagawa ◽  
Masaki Harada ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 52
Author(s):  
Mirja Koch ◽  
Constanze Scheel ◽  
Hongwei Ma ◽  
Fan Yang ◽  
Michael Stadlmeier ◽  
...  

Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.


Sign in / Sign up

Export Citation Format

Share Document