scholarly journals Whole Genome Analysis of African G12P[6] and G12P[8] Rotaviruses Provides Evidence of Porcine-Human Reassortment at NSP2, NSP3, and NSP4

2021 ◽  
Vol 11 ◽  
Author(s):  
Fortunate Mokoena ◽  
Mathew Dioh Esona ◽  
Luyanda Mapaseka Seheri ◽  
Martin Munene Nyaga ◽  
Nonkululelo Bonakele Magagula ◽  
...  

Group A rotaviruses (RVA) represent the most common cause of pediatric gastroenteritis in children <5 years, worldwide. There has been an increase in global detection and reported cases of acute gastroenteritis caused by RVA genotype G12 strains, particularly in Africa. This study sought to characterize the genomic relationship between African G12 strains and determine the possible origin of these strains. Whole genome sequencing of 34 RVA G12P[6] and G12P[8] strains detected from the continent including southern (South Africa, Zambia, Zimbabwe), eastern (Ethiopia, Uganda), central (Cameroon), and western (Togo) African regions, were sequenced using the Ion Torrent PGM method. The majority of the strains possessed a Wa-like backbone with consensus genotype constellation of G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while a single strain from Ethiopia displayed a DS-1-like genetic constellation of G12-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. In addition, three Ethiopian and one South African strains exhibited a genotype 2 reassortment of the NSP3 gene, with genetic constellation of G12-P[8]-I1-R1-C1-M1-A1-N1-T2-E1-H1. Overall, 10 gene segments (VP1–VP4, VP6, and NSP1–NSP5) of African G12 strains were determined to be genetically related to cognate gene sequences from globally circulating human Wa-like G12, G9, and G1 strains with nucleotide (amino acid) identities in the range of 94.1–99.9% (96.5–100%), 88.5–98.5% (93–99.1%), and 89.8–99.0% (88.7–100%), respectively. Phylogenetic analysis showed that the Ethiopian G12P[6] possessing a DS-1-like backbone consistently clustered with G2P[4] strains from Senegal and G3P[6] from Ethiopia with the VP1, VP2, VP6, and NSP1–NSP4 genes. Notably, the NSP2, NSP3, and NSP4 of most of the study strains exhibited the closest relationship with porcine strains suggesting the occurrence of reassortment between human and porcine strains. Our results add to the understanding of potential roles that interspecies transmission play in generating human rotavirus diversity through reassortment events and provide insights into the evolutionary dynamics of G12 strains spreading across selected sub-Saharan Africa regions.

2011 ◽  
Vol 92 (9) ◽  
pp. 2201-2208 ◽  
Author(s):  
Souvik Ghosh ◽  
Noriaki Adachi ◽  
Zipporah Gatheru ◽  
James Nyangao ◽  
Dai Yamamoto ◽  
...  

Although G2P[4] rotaviruses are common causes of acute childhood diarrhoea in Africa, to date there are no reports on whole genomic analysis of African G2P[4] strains. In this study, the nearly complete genome sequences of two Kenyan G2P[4] strains, AK26 and D205, detected in 1982 and 1989, respectively, were analysed. Strain D205 exhibited a DS-1-like genotype constellation, whilst strain AK26 appeared to be an intergenogroup reassortant with a Wa-like NSP2 genotype on the DS-1-like genotype constellation. The VP2-4, VP6-7, NSP1, NSP3 and NSP5 genes of strain AK26 and the VP2, VP4, VP7 and NSP1–5 genes of strain D205 were closely related to those of the prototype or other human G2P[4] strains. In contrast, their remaining genes were distantly related, and, except for NSP2 of AK26, appeared to originate from or share a common origin with rotavirus genes of artiodactyl (ruminant and camelid) origin. These observations highlight the complex evolutionary dynamics of African G2P[4] rotaviruses.


2020 ◽  
Vol 101 (9) ◽  
pp. 896-901
Author(s):  
Ashraf Shoeib ◽  
Daniel E. Velasquez Portocarrero ◽  
Yuhuan Wang ◽  
Baoming Jiang

An unusual group A rotavirus (RVA) strain (RVA/Human-tc/EGY/AS997/2012/G9[14]) was isolated for the first time in a faecal sample from a 6-month-old child who was hospitalized for treatment of acute gastroenteritis in Egypt in 2012. Whole-genome analysis showed that the strain AS997 had a unique genotype constellation: G9-P[14]-I2-R2-C2-M2-A11-N2-T1-E2-H1. Phylogenetic analysis indicated that the strain AS997 had the consensus P[14] genotype constellation with the G9, T1 and H1 reassortment. This suggests either a mixed gene configuration originated from a human Wa-like strain and a P[14]-containing animal virus, or that this P[14] could have been acquired via reassortment of human strains only. The study shows the possible roles of interspecies transmission and multiple reassortment events leading to the generation of novel rotavirus genotypes and underlines the importance of whole-genome characterization of rotavirus strains in surveillance studies.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S54-S54
Author(s):  
Ron Dagan ◽  
Shalom Ben-Shimol ◽  
Rachel Benisty ◽  
Gili Regev-Yochay ◽  
Merav Ron ◽  
...  

Abstract Background IPD caused by Sp2 (non-PCV13 serotype) is relatively rare. However, Sp2 has a high potential for causing IPD including meningitis. Large-scale outbreaks of Sp2 IPD are rare and were not reported post-PCV implementation. We describe Sp2 IPD outbreak in Israel, in the PCV13 era, caused by a novel clone. Additionally, we analyzed the population structure and evolutionary dynamics of Sp2 during 2006–2018. Methods An ongoing, population-based, nationwide active surveillance, conducted since July 2009. PCV7/PCV13 were implemented in Israel in July 2009 and November 2010, respectively. All isolates were tested for antimicrobial susceptibility, PFGE, MLST and whole-genome sequencing (WGS). Results. Overall, 173 Sp2 IPD cases were identified; all isolates were analyzed by MLST (Figure 1). During 2016–2017, Sp2 caused 7.6% of all-IPD, a 7-fold increase compared with 2006–2015, and ranked second (after serotype 12F causing 12%) among IPD isolates. During 2006–2015, 98% (40/41) Sp2 IPD were caused by the previously reported global ST-1504 clone. The outbreak was caused by a novel clone ST-13578, not previously reported (Figure 2). WGS analysis confirmed that ST-13578 was related, but genetically distinct from ST-1504, observed exclusively before the outbreak. A single strain of clone ST-74 previously globally reported was identified in 2017–2018. An additional case was identified in an adult in the UK, following a family visit from Israel. The ST-13578 clone was identified only in the Jewish population and was mainly distributed in 3 of the 7 Israeli districts. All tested strains were penicillin-susceptible (MIC < 0.06 μg/mL). Conclusion To the best of our knowledge, this is the first widespread Sp2 outbreak since PCV13 introduction worldwide, caused by a novel clone ST-13578. The outbreak is still ongoing, although a declining trend was noted since 2017. Disclosures All Authors: No reported Disclosures.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Daichi Morita ◽  
Masatomo Morita ◽  
Munirul Alam ◽  
Asish K. Mukhopadhyay ◽  
Fatema-tuz Johura ◽  
...  

ABSTRACT Vibrio cholerae serogroup O1 is responsible for epidemic and pandemic cholera and remains a global public health threat. This organism has been well established as a resident flora of the aquatic environment that alters its phenotypic and genotypic attributes for better adaptation to the environment. To reveal the diversity of clinical isolates of V. cholerae O1 in the Bay of Bengal, we performed whole-genome sequencing of isolates from Kolkata, India, and Dhaka, Bangladesh, collected between 2009 and 2016. Comparison with global isolates by phylogenetic analysis placed the current isolates in two Asian lineages, with lineages 1 and 2 predominant in Dhaka and Kolkata, respectively. Each lineage possessed different genetic traits in the cholera toxin B subunit gene, Vibrio seventh pandemic island II, integrative and conjugative element, and antibiotic-resistant genes. Thus, although recent global transmission of V. cholerae O1 from South Asia has been attributed only to isolates of lineage 2, another distinct lineage exists in Bengal. IMPORTANCE Cholera continues to be a global concern, as large epidemics have occurred recently in Haiti, Yemen, and countries of sub-Saharan Africa. A single lineage of Vibrio cholerae O1 has been considered to be introduced into these regions from South Asia and to cause the spread of cholera. Using genomic epidemiology, we showed that two distinct lineages exist in Bengal, one of which is linked to the global lineage. The other lineage was found only in Iran, Iraq, and countries in Asia and differed from the global lineage regarding cholera toxin variant and drug resistance profile. Therefore, the potential transmission of this lineage to other regions would likely cause worldwide cholera spread and may result in this lineage replacing the current global lineage.


2017 ◽  
Vol 49 ◽  
pp. 21-31 ◽  
Author(s):  
Ryan Navarro ◽  
Meiji Soe Aung ◽  
Katalina Cruz ◽  
Jennifer Ketzis ◽  
Christa Ann Gallagher ◽  
...  

2011 ◽  
Vol 86 (1) ◽  
pp. 11-18 ◽  
Author(s):  
G. J. Baillie ◽  
M. Galiano ◽  
P.-M. Agapow ◽  
R. Myers ◽  
R. Chiam ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2469
Author(s):  
Jiahui Guo ◽  
Zimin Liu ◽  
Xue Tong ◽  
Zixin Wang ◽  
Shangen Xu ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen in the swine industry, is a genetically highly diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus are not yet fully understood. In this study, we performed an integrated analysis of all available whole-genome sequences of type 2 PRRSV (n = 901) to reveal its evolutionary dynamics. The results showed that there were three distinct phylogenetic lineages of PRRSV in their distribution patterns. We identified that sublineage 2.7 (L2.7), associated with a NADC30 cluster, had the highest substitution rate and higher viral genetic diversity, and inter-lineage recombination is observed more frequently in L2.7 PRRSV compared to other sublineages. Most inter-lineage recombination events detected are observed between L2.7 PRRSVs (as major parents) and L3.4 (a JXA1-R-related cluster)/L3.7 (a WUH3-related cluster) PRRSVs (as minor parents). Moreover, the recombination hotspots are located in the structural protein gene ORF2 and ORF4, or in the non-structural protein gene nsp7. In addition, a GM2-related cluster, L3.2, shows inconsistent recombination modes compared to those of L2.7, suggesting that it may have undergone extensive and unique recombination in their evolutionary history. We also identified several amino acids under positive selection in GP2, GP4 and GP5, the major glycoproteins of PRRSV, showing the driving force behind adaptive evolution. Taken together, our results provide new insights into the evolutionary dynamics of PPRSV that contribute to our understanding of the critical factors involved in its evolution and guide future efforts to develop effective preventive measures against PRRSV.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Sebotsana Rasebotsa ◽  
Jeannine Uwimana ◽  
Milton T. Mogotsi ◽  
Kebareng Rakau ◽  
Nonkululeko B. Magagula ◽  
...  

Children in low-and middle-income countries, including Rwanda, experience a greater burden of rotavirus disease relative to developed countries. Evolutionary mechanisms leading to multiple reassortant rotavirus strains have been documented over time which influence the diversity and evolutionary dynamics of novel rotaviruses. Comprehensive rotavirus whole-genome analysis was conducted on 158 rotavirus group A (RVA) samples collected pre- and post-vaccine introduction in children less than five years in Rwanda. Of these RVA positive samples, five strains with the genotype constellations G4P[4]-I1-R2-C2-M2-A2-N2-T1-E1-H2 (n = 1), G9P[4]-I1-R2-C2-M2-A1-N1-T1-E1-H1 (n = 1), G12P[8]-I1-R2-C2-M1-A1-N2-T1-E2-H3 (n = 2) and G12P[8]-I1-R1-C1-M1-A2-N2-T2-E1-H1 (n = 1), with double and triple gene reassortant rotavirus strains were identified. Phylogenetic analysis revealed a close relationship between the Rwandan strains and cognate human RVA strains as well as the RotaTeq® vaccine strains in the VP1, VP2, NSP2, NSP4 and NSP5 gene segments. Pairwise analyses revealed multiple differences in amino acid residues of the VP7 and VP4 antigenic regions of the RotaTeq® vaccine strain and representative Rwandan study strains. Although the impact of such amino acid changes on the effectiveness of rotavirus vaccines has not been fully explored, this analysis underlines the potential of rotavirus whole-genome analysis by enhancing knowledge and understanding of intergenogroup reassortant strains circulating in Rwanda post vaccine introduction.


Sign in / Sign up

Export Citation Format

Share Document