scholarly journals Antimicrobial Resistance Genes in Bacteria Isolated From Japanese Honey, and Their Potential for Conferring Macrolide and Lincosamide Resistance in the American Foulbrood Pathogen Paenibacillus larvae

2021 ◽  
Vol 12 ◽  
Author(s):  
Mariko Okamoto ◽  
Masahiko Kumagai ◽  
Hiroyuki Kanamori ◽  
Daisuke Takamatsu

American foulbrood (AFB) is the most serious bacterial disease of honey bee brood. Spores of the causative agent Paenibacillus larvae are ingested by bee larvae via brood foods and germinated cells proliferate in the larval midgut. In Japan, a macrolide antibiotic, tylosin, is used as the approved prophylactic for AFB. Although tylosin-resistant P. larvae has yet to be found in Japan, it may emerge in the future through the acquisition of macrolide resistance genes from other bacteria, and bacteria latent in brood foods, such as honey, may serve as a source of resistance genes. In this study, to investigate macrolide resistance genes in honey, we attempted to isolate tylosin-resistant bacteria from 53 Japanese honey samples and obtained 209 isolates from 48 samples in the presence of 1 μg/ml of tylosin. All isolates were Gram-positive spore-forming bacteria mainly belonging to genera Bacillus and Paenibacillus, and 94.3% exhibited lower susceptibility to tylosin than Japanese P. larvae isolates. Genome analysis of 50 representative isolates revealed the presence of putative macrolide resistance genes in the isolates, and some of them were located on mobile genetic elements (MGEs). Among the genes on MGEs, ermC on the putative mobilizable plasmid pJ18TS1mac of Oceanobacillus strain J18TS1 conferred tylosin and lincomycin resistance to P. larvae after introducing the cloned gene using the expression vector. Moreover, pJ18TS1mac was retained in the P. larvae population for a long period even under non-selective conditions. This suggests that bacteria in honey is a source of genes for conferring tylosin resistance to P. larvae; therefore, monitoring of bacteria in honey may be helpful to predict the emergence of tylosin-resistant P. larvae and prevent the selection of resistant strains.

2019 ◽  
Vol 64 (2) ◽  
pp. 125-137 ◽  
Author(s):  
Liese Van Gompel ◽  
Wietske Dohmen ◽  
Roosmarijn E C Luiken ◽  
Martijn Bouwknegt ◽  
Lourens Heres ◽  
...  

Abstract Objectives Slaughterhouse staff is occupationally exposed to antimicrobial resistant bacteria. Studies reported high antimicrobial resistance gene (ARG) abundances in slaughter pigs. This cross-sectional study investigated occupational exposure to tetracycline (tetW) and macrolide (ermB) resistance genes and assessed determinants for faecal tetW and ermB carriage among pig slaughterhouse workers. Methods During 2015–2016, 483 faecal samples and personal questionnaires were collected from workers in a Dutch pig abattoir, together with 60 pig faecal samples. Human dermal and respiratory exposure was assessed by examining 198 carcass, 326 gloves, and 33 air samples along the line, next to 198 packed pork chops to indicate potential consumer exposure. Samples were analyzed by qPCR (tetW, ermB). A job exposure matrix was created by calculating the percentage of tetW and ermB positive carcasses or gloves for each job position. Multiple linear regression models were used to link exposure to tetW and ermB carriage. Results Workers are exposed to tetracycline and macrolide resistance genes along the slaughter line. Tetw and ermB gradients were found for carcasses, gloves, and air filters. One packed pork chop contained tetW, ermB was non-detectable. Human faecal tetW and ermB concentrations were lower than in pig faeces. Associations were found between occupational tetW exposure and human faecal tetW carriage, yet, not after model adjustments. Sampling round, nationality, and smoking were determinants for ARG carriage. Conclusion We demonstrated clear environmental tetracycline and macrolide resistance gene exposure gradients along the slaughter line. No robust link was found between ARG exposure and human faecal ARG carriage.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 459
Author(s):  
Casey Stamereilers ◽  
Simon Wong ◽  
Philippos K. Tsourkas

The bacterium Paenibacillus larvae is the causative agent of American foulbrood, the most devastating bacterial disease of honeybees. Because P. larvae is antibiotic resistant, phages that infect it are currently used as alternative treatments. However, the acquisition by P. larvae of CRISPR spacer sequences from the phages could be an obstacle to treatment efforts. We searched nine complete genomes of P. larvae strains and identified 714 CRISPR spacer sequences, of which 384 are unique. Of the four epidemiologically important P. larvae strains, three of these have fewer than 20 spacers, while one strain has over 150 spacers. Of the 384 unique spacers, 18 are found as protospacers in the genomes of 49 currently sequenced P. larvae phages. One P. larvae strain does not have any protospacers found in phages, while another has eight. Protospacer distribution in the phages is uneven, with two phages having up to four protospacers, while a third of phages have none. Some phages lack protospacers found in closely related phages due to point mutations, indicating a possible escape mechanism. This study serve a point of reference for future studies on the CRISPR-Cas system in P. larvae as well as for comparative studies of other phage–host systems.


2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Elizabeth A. Miller ◽  
Julia B. Ponder ◽  
Michelle Willette ◽  
Timothy J. Johnson ◽  
Kimberly L. VanderWaal

ABSTRACT Antimicrobial resistance (AMR) is a well-documented phenomenon in bacteria from many natural ecosystems, including wild animals. However, the specific determinants and spatial distribution of resistant bacteria and antimicrobial resistance genes (ARGs) in the environment remain incompletely understood. In particular, information regarding the importance of anthropogenic sources of AMR relative to that of other biological and ecological influences is lacking. We conducted a cross-sectional study of AMR in great horned owls (Bubo virginianus) and barred owls (Strix varia) admitted to a rehabilitation center in the midwestern United States. A combination of selective culture enrichment and shotgun metagenomic sequencing was used to identify ARGs from Enterobacteriaceae. Overall, the prevalence of AMR was comparable to that in past studies of resistant Enterobacteriaceae in raptors, with acquired ARGs being identified in 23% of samples. Multimodel regression analyses identified seasonality and owl age to be important predictors of the likelihood of the presence of ARGs, with birds sampled during warmer months being more likely to harbor ARGs than those sampled during cooler months and with birds in their hatch year being more likely to harbor β-lactam ARGs than adults. Beyond host-specific determinants, ARG-positive owls were also more likely to be recovered from areas of high agricultural land cover. Spatial clustering analyses identified a significant high-risk cluster of tetracycline resistance gene-positive owls in the southern sampling range, but this could not be explained by any predictor variables. Taken together, these results highlight the complex distribution of AMR in natural environments and suggest that both biological and anthropogenic factors play important roles in determining the emergence and persistence of AMR in wildlife. IMPORTANCE Antimicrobial resistance (AMR) is a multifaceted problem that poses a worldwide threat to human and animal health. Recent reports suggest that wildlife may play an important role in the emergence, dissemination, and persistence of AMR. As such, there have been calls for better integration of wildlife into current research on AMR, including the use of wild animals as biosentinels of AMR contamination in the environment. A One Health approach can be used to gain a better understanding of all AMR sources and pathways, particularly those at the human-animal-environment interface. Our study focuses on this interface in order to assess the effect of human-impacted landscapes on AMR in a wild animal. This work highlights the value of wildlife rehabilitation centers for environmental AMR surveillance and demonstrates how metagenomic sequencing within a spatial epidemiology framework can be used to address questions surrounding AMR complexity in natural ecosystems.


Author(s):  
Na Li ◽  
Chong Liu ◽  
Zhiguo Zhang ◽  
Hongna Li ◽  
Tingting Song ◽  
...  

The extensive use of antimicrobials in animal farms poses serious safety hazards to both the environment and public health, and this trend is likely to continue. Antimicrobial resistance genes (ARGs) are a class of emerging pollutants that are difficult to remove once introduced. Understanding the environmental transfer of antimicrobial-resistant bacteria (ARB) and ARGs is pivotal for creating control measures. In this review, we summarize the research progress on the spread and detection of ARB and ARG pollution related to animal husbandry. Molecular methods such as high-throughput sequencing have greatly enriched the information about ARB communities. However, it remains challenging to delineate mechanisms regarding ARG induction, transmission, and tempo-spatial changes in the whole process, from animal husbandry to multiple ecosystems. As a result, future research should be more focused on the mechanisms of ARG induction, transmission, and control. We also expect that future research will rely more heavily on metagenomic -analysis, metatranscriptomic sequencing, and multi-omics technologies


2017 ◽  
Vol 80 (12) ◽  
pp. 2048-2055 ◽  
Author(s):  
Tao Yu ◽  
Xiaobing Jiang ◽  
Yu Liang ◽  
Yanping Zhu ◽  
Jinhe Tian ◽  
...  

ABSTRACT The aim of this study was to investigate antimicrobial resistance and the presence and transferability of corresponding resistance genes and integrons in bacteria isolated from cooked meat samples in the People's Republic of China. A total of 150 isolates (22 species belonging to 15 genera) were isolated from 49 samples. Resistance of these isolates to antimicrobials was commonly observed; 42.7, 36.0, and 25.3% of the isolates were resistant to tetracycline, streptomycin, and ampicillin, respectively. Multidrug resistance was observed in 41 (27.3%) of the isolates. Sixteen resistance genes, i.e., blaTEM-1 and blaCTX-M-14 (β-lactams), aac(3)-IIa (gentamicin), strA and strB (streptomycin), qnrB and qnrS (fluoroquinolone), sul1, sul2, and sul3 (sulfamethoxazole), cat1 and cat2 (chloramphenicol), and tetM, tetA, tetS, and tetB (tetracycline), were found in 54 isolates. One isolate of Pseudomonas putida carried qnrB, and sequence analysis of the PCR product revealed 96% identity to qnrB2. The qnr genes were found coresiding and were cotransferred with bla genes in two isolates. Twelve isolates were positive for the class 1 integrase gene, and four isolates carried the class 2 integrase gene. However, no class 3 integrase gene was detected. One isolate of Proteus mirabilis carried dfrA32-ereA-aadA2, and this unusual array could be transferred to Escherichia coli. Nonclassic class 1 integrons lacking qacEΔ1 and sul1 genes were found in 2 of the 12 intI1-positive isolates. Our results revealed the presence of multidrug-resistant bacteria in cooked meats and the presence and transferability of resistance genes in some isolates, suggesting that cooked meat products may act as reservoirs of drug-resistant bacteria and may facilitate the spread of resistance genes.


2021 ◽  
Author(s):  
◽  
Samantha Amy Montrose Graham

<p>Though the honey bee (Apis mellifera) is exposed to an extensive diversity of parasites and pathogens from multiple kingdoms, few are as devastating as American foulbrood. American foulbrood is a highly contagious bacterial disease, of which the causative agent (bacterium Paenibacillus larvae) infects honey bee brood through the ingestion of its spores, ultimately leading to the death of the infected larva and the collapse of the infected hive. Paenibacillus larvae’s genotypes (ERIC I-IV) exhibit differing ‘killing time’ of infected larvae, resulting in different larval and colony level virulence of the disease within hives.  American foulbrood is found in New Zealand’s registered hives, and poses a threat to the country’s apiculture industry. The first objective of this thesis was to perform a genetic analysis on New Zealand’s P. larvae field strains using the well-established methodology of rep-PCR with MBO REP1 primers. A total of 172 bacteria isolates were gathered from registered hives from 2011 to 2014 and examined. The MBO REP1 primer identifies the ‘beta’ genetic subgroups of P. larvae. By identifying beta subgroups, the ERIC genotypes that are present in New Zealand can also be concluded. The genetic analysis of P. larvae using rep-PCR is a first for New Zealand, and appears to be a first for Australasia. The second objective of this thesis was to conduct a temporal and geographical statistical analysis on American foulbrood infection rate trends in New Zealand’s national and regional, divided into seven regions, registered hives and apiaries from 1994 to 2013.  The genetic analysis of P. larvae detected three ‘beta’ genotypic subgroups: B, b, and Б. From these findings it was concluded that ERIC I and ERIC II are present in New Zealand. Previous to my findings, subgroup B and Б and ERIC II genotype had not been recorded outside of Europe. The statistical analysis reported that American foulbrood infection rates were significantly decreasing nationally. Results also reported that four of the seven regions’ infection rates were significantly decreasing, whilst three regions were significantly increasing.  Conclusions on the subgroups and genotypes present in New Zealand gives the first insight to the virulence and occurrence of P. larvae strains. Additionally, the use of rep-PCR for the genetic analysis of P. larvae enables this thesis to contribute to the increasing knowledge on American foulbrood. By examining the temporal and geographic dynamics of American foulbrood, the results allow for the evaluation of current management strategies and the most recent understanding on the national and regional infection rates of the disease.</p>


Author(s):  
Hornel Koudokpon ◽  
Victorien Dougnon ◽  
Christelle Lougbegnon ◽  
Esther Deguenon ◽  
Wassiyath Mousse ◽  
...  

Background: The environment plays an important role in the dissemination of multidrug resistant bacteria, especially through the aquatic ecosystem, including hospital effluents, rivers, but also spring water and drinking water. This study aims to determine selected antimicrobial resistance genes in some aquatic matrices in southern Benin. Methods: Collected water samples were filtered through a membrane 0.22 µm thick. After filtration, the membrane was deposited on Muëller Hinton agar. Then the colonies resulting from this subculture were subjected to a microbiological examination by the conventional method. The antibiotic sensitivity test was carried out by the Kirby Bauer method according to the recommendations of the French Society of Microbiology. Resistance genes were looked for by PCR. Results: Of the 222 water samples collected, 265 bacterial strains were isolated, the majority of which were strains of Coagulase Negative Staphylococcus (CNS) with 37.74% (n = 100), followed by strains of Klebsiella pneumoniae (21.89%; n = 58), Escherichia coli (10.57%; n = 28). All isolated gram-negative bacilli strains are multidrug resistant with resistance of all strains to amoxicillin, ampicillin and amoxicillin + clavulanic acid. Of the 15 resistance genes searched in the genome of Gram-negative bacilli strains, 8 were detected, namely the TEM, SHV, CTX-M15, VIM, NDM, SUL1, SUL2 and AADA genes. Resistance of CNS strains to amoxicillin, oxacillin and cefoxitin was observed. The meca gene was detected in all CNS strains. The vanA and VanB genes were only detected in strains isolated from drinking water in sachets collected from producers and street sellers. Conclusion: These results show the dissemination of resistance genes in Benin and once again confirms the urgency of a global fight against antimicrobial resistance.


Author(s):  
Cristian Pérez-Corrales ◽  
Valeria Peralta-Barquero ◽  
Christopher Mairena-Acuña

Abstract Background The assessment of Hospital-acquired infections due to multidrug-resistant bacteria involves the use of a variety of commercial and laboratory-developed tests to detect antimicrobial resistance genes in bacterial pathogens; however, few are evaluated for use in low- and middle-income countries. Methods We used whole-genome sequencing, rapid commercial molecular tests, laboratory-developed tests and routine culture testing. Results We identified the carriage of the metallo-β-lactamase blaVIM-2 and blaIMP-18 alleles in Carbapenem-Resistant Pseudomonas aeruginosa infections among children in Costa Rica. Conclusions The blaIMP-18 allele is not present in the most frequently used commercial tests; thus, it is possible that the circulation of this resistance gene may be underdiagnosed in Costa Rica.


Sign in / Sign up

Export Citation Format

Share Document