scholarly journals Selective Adsorption of Amino Acids in Crystals of Monohydrocalcite Induced by the Facultative Anaerobic Enterobacter ludwigii SYB1

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanyang Zhao ◽  
Zuozhen Han ◽  
Huaxiao Yan ◽  
Hui Zhao ◽  
Maurice E. Tucker ◽  
...  

The morphology, crystal structure, and elemental composition of biominerals are commonly different from chemically synthesized minerals, but the reasons for these are not fully understood. A facultative anaerobic bacterium, Enterobacter ludwigii SYB1, is used in experiments to document the hydrochemistry, mineral crystallization, and cell surface characteristics of biomineralization. It was found that carbonate anhydrase and ammonia production were major factors influencing the alkalinity and saturation of the closed biosystem. X-ray diffraction (XRD) spectra showed that calcite, monohydrocalcite (MHC), and dypingite formed in samples with bacterial cells. It was also found that the (222) plane of MHC was the preferred orientation compared to standard data. Scanning transmission electron microscopy (STEM) analysis of cell slices provides direct evidence of concentrated calcium and magnesium ions on the surface of extracellular polymeric substances (EPS). In addition, high-resolution transmission electron microscopy (HRTEM) showed that crystallized nanoparticles were formed within the EPS. Thus, the mechanism of the biomineralization induced by E. ludwigii SYB1 can be divided into three stages: (i) the production of carbonate anhydrase and ammonia increases the alkalinity and saturation state of the milieu, (ii) free calcium and magnesium ions are adsorbed and chelated onto EPS, and (iii) nanominerals crystallize and grow within the EPS. Seventeen kinds of amino acids were identified within both biotic MHC and the EPS of SYB1, while the percentages of glutamic and aspartic acid in MHC increased significantly (p < 0.05). Furthermore, the adsorption energy was calculated for various amino acids on seven diffracted crystal faces, with preferential adsorption demonstrated on (111) and (222) faces. At the same time, the lowest adsorption energy was always that of glutamic and aspartic acid for the same crystal plane. These results suggest that aspartic and glutamic acid always mix preferentially in the crystal lattice of MHC and that differential adsorption of amino acids on crystal planes can lead to their preferred orientation. Moreover, the mixing of amino acids in the mineral structure may also have a certain influence on the mineral lattice dislocations, thus enhancing the thermodynamic characteristics.

1974 ◽  
Vol 60 (3) ◽  
pp. 673-705 ◽  
Author(s):  
A. N. CLEMENTS ◽  
TERRY E. MAY

1. Two nerve-muscle preparations were used to investigate the physiology of the locust retractor unguis muscle in relation to L-glutamic acid. These were an ‘isolated preparation’, in which the muscle and its nerve were dissected out, and a ‘perfusedfemur preparation’, in which the muscle suffered no mechanical disturbance. 2. Exposure of the nerve--muscle preparations to glutamate caused a variety of responses, some of which were shown to be abnormal and due to the experimental conditions. 3. When locust femora were perfused with saline or haemolymph the retractor unguis muscles were much more severely affected by glutamate if the hydrostatic pressure was slightly raised. At raised pressures the perfused-femur preparations were particularly prone to give repetitive and spontaneous contractions. 4. Analysis of haemolymph from adult male locusts showed that it contained, on average, 0-2 mmol/1 L-glutamate, 45 mol/1 total non-peptide amino acids, 5-0 mmol/1 calcium, and 11-6 mmol/1 magnesium. It was calculated that approximately 50% of the calcium and 75% of the magnesium ions are bound to amino acids, and that approximately 25% of the glutamic acid is bound to divalent metal ions. 5. The isolated preparations were severely affected by glutamate at the concentration at which it occurs in haemolymph, and it was concluded that in the intact locust some mechanism must protect the neuromuscular synapses from haemolymphg lutamate. No evidence could be obtained of the sequestration of glutamate by haemocytes, or of binding of glutamate to haemolymph proteins. 6. Calcium and magnesium ions reduced the sensitivity of nerve-muscle preparations to glutamate to a greater extent than could be accounted for by the formation of amino acid-metal complexes. This suggests that the protection afforded by calcium and magnesium involves an interaction of the metal ions with the neuromuscular system itself. 7. The retractor unguis muscle was much less sensitive to glutamate when it was contained within an undissected femur than in an isolated preparation. It was concluded that the muscle is normally protected from haemolymph glutamate by a diffusion barrier which is damaged on dissection. 8. Comparison of the fine structure of retractor unguis muscles, fixed either after dissection or while still contained within the femur, showed that dissection normally caused a partial separation of muscle fibres and damage to the connective tissue sheath, with the resultant exposure of some nerve endings. The connective tissue sheath may constitute the postulated diffusion barrier. 9. The excitatory synapses of the locust retractor unguis muscle are believed to be isolated from haemolymph glutamate by a diffusion barrier, which is tentatively identified with the connective tissue sheath that binds the muscle fibres together. Calcium and magnesium ions reduce the sensitivity of nerve-muscle preparations to glutamate, and may have such a role in the living insect.


Author(s):  
Jane A. Westfall ◽  
Paul D. Enos

Using scanning and transmission electron microscopy (SEM and TEM), we observed batteries of 20-30 nematocytes, cnidoblasts, sensory cells, and other neurons invaginated within epitheliomuscular cells of Hydra. In an attempt to determine how the cells were structurally interrelated, we isolated cells of Hydra littoralis for further study by SEM and TEM.To isolate cells, 30 Hydra littoralis were placed for 30 minutes in a P19 culture medium modified by omitting calcium and magnesium ions, adding 20% sucrose and stabilizing at pH 7.2 with sodium phosphate, then pipetted gently to free the epithelial cells from the mesoglea. Glutaraldehyde was added to make a 5% solution and the cells were fixed 1 hour at 0-4°C, centrifuged 10 minutes at 1000 X g, resuspended in cacodylate buffer twice, and placed 2 hours in 4% osmium tetroxide at 0-4°C.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2601
Author(s):  
Anna Zaytseva ◽  
Konstantin Chekanov ◽  
Petr Zaytsev ◽  
Daria Bakhareva ◽  
Olga Gorelova ◽  
...  

The microalga Coelastrella rubescens dwells in habitats with excessive solar irradiation; consequently, it must accumulate diverse compounds to protect itself. We characterized the array of photoprotective compounds in C. rubescens. Toward this goal, we exposed the cells to high fluxes of visible light and UV-A and analyzed the ability of hydrophilic and hydrophobic extracts from the cells to absorb radiation. Potential light-screening compounds were profiled by thin layer chromatography and UPLC-MS. Coelastrella accumulated diverse carotenoids that absorbed visible light in the blue–green part of the spectrum and mycosporine-like amino acids (MAA) that absorbed the UV-A. It is the first report on the occurrence of MAA in Coelastrella. Two new MAA, named coelastrin A and coelastrin B, were identified. Transmission electron microscopy revealed the development of hydrophobic subcompartments under the high light and UV-A exposition. We also evaluate and discuss sporopollenin-like compounds in the cell wall and autophagy-like processes as the possible reason for the decrease in sunlight absorption by cells, in addition to inducible sunscreen accumulation. The results suggested that C. rubescens NAMSU R1 accumulates a broad range of valuable photoprotective compounds in response to UV-A and visible light irradiation, which indicates this strain as a potential producer for biotechnology.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Sign in / Sign up

Export Citation Format

Share Document