scholarly journals The Effect of Ryegrass Silage Feeding on Equine Fecal Microbiota and Blood Metabolite Profile

2021 ◽  
Vol 12 ◽  
Author(s):  
Yiping Zhu ◽  
Xuefan Wang ◽  
Bo Liu ◽  
Ziwen Yi ◽  
Yufei Zhao ◽  
...  

Silage is fed to horses in China and other areas in the world, however, knowledge about the impact of feeding silage on horse health is still limited. In the current study, 12 horses were assigned into two groups and fed ryegrass silage and ryegrass hay, respectively, for 8 weeks. High-throughput sequencing was applied to analyze fecal microbiota, while liquid chromatography–tandem mass spectrometry (LC–MS/MS) based metabolomics technique was used for blood metabolite profile to investigate the influence of feeding ryegrass silage (group S) compared to feeding ryegrass hay (group H) on equine intestinal and systemic health. Horses in group S had significantly different fecal microbiota and blood metabolomes from horses in group H. The results showed that Verrucomicrobia was significantly less abundant which plays important role in maintaining the mucus layer of the hindgut. Rikenellaceae and Christensenellaceae were markedly more abundant in group S and Rikenellaceae may be associated with some gut diseases and obesity. The metabolomics analysis demonstrated that ryegrass silage feeding significantly affected lipid metabolism and insulin resistance in horses, which might be associated with metabolic dysfunction. Furthermore, Pearson’s correlation analysis revealed some correlations between bacterial taxa and blood metabolites, which added more evidence to diet-fecal microbiota-health relationship. Overall, ryegrass silage feeding impacted systemic metabolic pathways in horses, especially lipid metabolism. This study provides evidence of effects of feeding ryegrass silage on horses, which may affect fat metabolism and potentially increase risk of insulin resistance. Further investigation will be promoted to provide insight into the relationship of a silage-based diet and equine health.

2010 ◽  
Vol 7 (4) ◽  
pp. 8-11 ◽  
Author(s):  
N A Petunina ◽  
N E Al'tshuler ◽  
N G Rakova ◽  
L V Trukhina

The review presents a recent data from the literature on the physiologic and pathophysiologic role of adipose tissue hormones (adiponectin, resistin, leptin). The article details the role of adipocytokines in atherogenesis. It also presents the results of studies depicting the relationship between subclinical hypothyroidism, lipid metabolism and insulin resistance as well as the impact of thyroid dysfunction upon the secretion of adipocytokines.


2008 ◽  
Vol 48 ◽  
pp. S65-S66
Author(s):  
M. García-Fernández ◽  
J.E. Puche ◽  
G. Delgado ◽  
S. González-Barón ◽  
I. Castilla-Cortázar

Author(s):  
Muath Alanbaei ◽  
Mohamed Abu-Farha ◽  
Prashantha Hebbar ◽  
Motasem Melhem ◽  
Betty S Chandy ◽  
...  

ANGPTL3 is an important regulator of lipid metabolism. Its inhibition in people with hypercholesteremia reduces plasma lipid levels dramatically. Genome-wide association studies have associated ANGPTL3 variants with lipid traits. Irisin, an exercise modulated protein, has been associated with lipid metabolism. Intracellular accumulation of lipids impairs insulin action and contributes to metabolic disorders. In this study, we evaluate the impact of ANGPTL3 variants on levels of irisin and markers associated with lipid metabolism and insulin resistance. ANGPTL3 rs1748197 and rs12130333 variants were genotyped in a cohort of 278 Arab individuals from Kuwait. Levels of irisin and other metabolic markers were measured by ELISA. Significance of association signals was assessed using Bonferroni-corrected P-values and empirical P-values. The study variants were significantly associated with low levels of c-peptide and irisin. Levels of c-peptide and irisin were mediated by interaction between carrier genotypes (GA+AA) at rs1748197 and measures of IL13 and TG, respectively. While levels of c-peptide and IL13 were directly correlated in individuals with reference genotype, they were inversely correlated in individuals with carrier genotype. Irisin correlated positively with TG which is strong in individuals with carrier genotypes. These observations illustrate ANGPTL3 as a potential link connecting lipid metabolism, insulin resistance and cardioprotection.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 755
Author(s):  
Muath Alanbaei ◽  
Mohamed Abu-Farha ◽  
Prashantha Hebbar ◽  
Motasem Melhem ◽  
Betty S. Chandy ◽  
...  

ANGPTL3 is an important regulator of lipid metabolism. Its inhibition in people with hypercholesteremia reduces plasma lipid levels dramatically. Genome-wide association studies have associated ANGPTL3 variants with lipid traits. Irisin, an exercise-modulated protein, has been associated with lipid metabolism. Intracellular accumulation of lipids impairs insulin action and contributes to metabolic disorders. In this study, we evaluate the impact of ANGPTL3 variants on levels of irisin and markers associated with lipid metabolism and insulin resistance. ANGPTL3 rs1748197 and rs12130333 variants were genotyped in a cohort of 278 Arab individuals from Kuwait. Levels of irisin and other metabolic markers were measured by ELISA. Significance of association signals was assessed using Bonferroni-corrected p-values and empirical p-values. The study variants were significantly associated with low levels of c-peptide and irisin. Levels of c-peptide and irisin were mediated by interaction between carrier genotypes (GA + AA) at rs1748197 and measures of IL13 and TG, respectively. While levels of c-peptide and IL13 were directly correlated in individuals with the reference genotype, they were inversely correlated in individuals with the carrier genotype. Irisin correlated positively with TG and was strong in individuals with carrier genotypes. These observations illustrate ANGPTL3 as a potential link connecting lipid metabolism, insulin resistance and cardioprotection.


2016 ◽  
Vol 88 (3) ◽  
pp. 78-82 ◽  
Author(s):  
A. L. Zagayko ◽  
◽  
A. I. Shkapo ◽  
V. P. Fylymonenko ◽  
T. O. Briukhanova ◽  
...  

2019 ◽  
Author(s):  
Bruno César Miranda Oliveira ◽  
Katia Denise Saraiva Bresciani ◽  
Giovanni Widmer

ABSTRACTBased on our initial observations showing that mice consuming a probiotic product develop more severe cryptosporidiosis, we investigated the impact of other dietary interventions on the intracellular proliferation ofCryptosporidium parvumandC. tyzzeriin the mouse. Mice were orally infected with oocysts and parasite multiplication measured by quantifying fecal oocyst output. High-throughput sequencing of 16S ribosomal RNA amplicons was used to correlate oocyst output with diet and with the composition of the intestinal microbiota. On average, mice fed a diet without fiber (cellulose, pectin and inulin) developed more severe infections. As expected, a diet without fibers also significantly altered the fecal microbiota. Consistent with these observations, mice fed a prebiotic product sold for human consumption excreted significantly fewer oocysts. The fecal microbiota of mice consuming no plant polysaccharides was characterized by a lower relative abundance of Bacteroidetes bacteria. Since bacterial metabolites play an important role in the physiology of intestinal enterocytes, we hypothesize based on these observations that the impact of diet on parasite proliferation is mediated primarily by the metabolic activity of the anaerobic microbiota, specifically by the effect of certain metabolites on the host. This model is consistent with the metabolic dependence of intracellular stages of the parasite on the host cell. These observations underscore the potential of dietary interventions to alleviate the impact of cryptosporidiosis, particularly in infants at risk of recurrent enteric infections.AUTHOR SUMMARYThe infection withCryptosporidiumparasite, a condition known as cryptosporidiosis, is a common cause of infant diarrhea in developing countries. We have previously shown that mice infected withC. parvum, one of the main cause of human cryptosporidiosis, develop a more severe infection if given probiotics. To investigate the mechanism of this effect, we fed mice prebiotics and diet lacking plant fiber. We found that fermentable fiber, whether administered as a prebiotic supplement or is part of the diet, has a protective effect against cryptosporidiosis in mice. We also observed a significant association between the severity of infection and the composition of the gut microbiota. A significant inverse correlation was found between severity of cryptosporidiosis and the ratio between the abundance of bacteria belonging to the phylum Bacteroidetes and the abundance of Firmicute bacteria. This ratio is frequently viewed as a marker of a healthy microbiota. These results raise the possibility that dietary interventions could be used to alleviate the impact of cryptosporidiosis.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Wang ◽  
Heng Wang ◽  
Yuancheng Li ◽  
Lei Song

AbstractRecent advances in society have resulted in the emergence of both hyperlipidemia and obesity as life-threatening conditions in people with implications for various types of diseases, such as cardiovascular diseases and cancer. This is further complicated by a global rise in the aging population, especially menopausal women, who mostly suffer from overweight and bone loss simultaneously. Interestingly, clinical observations in these women suggest that osteoarthritis may be linked to a higher body mass index (BMI), which has led many to believe that there may be some degree of bone dysfunction associated with conditions such as obesity. It is also common practice in many outpatient settings to encourage patients to control their BMI and lose weight in an attempt to mitigate mechanical stress and thus reduce bone pain and joint dysfunction. Together, studies show that bone is not only a mechanical organ but also a critical component of metabolism, and various endocrine functions, such as calcium metabolism. Numerous studies have demonstrated a relationship between metabolic dysfunction in bone and abnormal lipid metabolism. Previous studies have also regarded obesity as a metabolic disorder. However, the relationship between lipid metabolism and bone metabolism has not been fully elucidated. In this narrative review, the data describing the close relationship between bone and lipid metabolism was summarized and the impact on both the normal physiology and pathophysiology of these tissues was discussed at both the molecular and cellular levels.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Fang Yang ◽  
Jennifer A. A. DeLuca ◽  
Rani Menon ◽  
Erika Garcia-Vilarato ◽  
Evelyn Callaway ◽  
...  

Abstract Background Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. Results Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. Conclusions Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.


2000 ◽  
Vol 151 (1) ◽  
pp. 98-99
Author(s):  
M. Muurling ◽  
V.E.H. Dahlmans ◽  
M.C. Jong ◽  
R.P. Mensink ◽  
L.M. Havekes

Sign in / Sign up

Export Citation Format

Share Document