scholarly journals Effect of diet and intestinal AhR expression on fecal microbiome and metabolomic profiles

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Fang Yang ◽  
Jennifer A. A. DeLuca ◽  
Rani Menon ◽  
Erika Garcia-Vilarato ◽  
Evelyn Callaway ◽  
...  

Abstract Background Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. Results Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. Conclusions Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jiayi Su ◽  
Wanghong Zhang ◽  
Cui Ma ◽  
Peifeng Xie ◽  
Francois Blachier ◽  
...  

The present study determined the effects of dietary xylo-oligosaccharides (XOS) supplementation on the morphology of jejunum and ileum epithelium, fecal microbiota composition, metabolic activity, and expression of genes related to colon barrier function. A total of 150 piglets were randomly assigned to one of five groups: a blank control group (receiving a basal diet), three XOS groups (receiving the basal diet supplemented with 100, 250, and 500 g/t XOS, respectively), as well as a positive control group, used as a matter of comparison, that received the basal diet supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3,000 mg/kg ZnO. The trial was carried out for 56 days. The results showed that the lowest dose tested (100 g/t XOS) increased (P < 0.05) the ileal villus height, the relative amount of Lactobacillus and Bifidobacterium spp., and the concentration of acetic acid and short-chain fatty acid in feces when compared with the blank control group. In conclusion, dietary 100 g/t XOS supplementation modifies the intestinal ecosystem in weaned piglets in an apparently overall beneficial way.


2021 ◽  
Vol 9 (8) ◽  
pp. 1723
Author(s):  
Jacques Gonzales ◽  
Justine Marchix ◽  
Laetitia Aymeric ◽  
Catherine Le Berre-Scoul ◽  
Johanna Zoppi ◽  
...  

Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders defined by impaired social interactions and communication with repetitive behaviors, activities, or interests. Gastrointestinal (GI) disturbances and gut microbiota dysbiosis are frequently associated with ASD in childhood. However, it is not known whether microbiota dysbiosis in ASD patients also occurs in adulthood. Further, the consequences of altered gut microbiota on digestive functions and the enteric nervous system (ENS) remain unexplored. Therefore, we studied, in mice, the ability offecal supernatant (FS) from adult ASD patients to induce GI dysfunctions and ENS remodeling. First, the analyses of the fecal microbiota composition in adult ASD patients indicated a reduced α-diversity and increased abundance of three bacterial 16S rRNA gene amplicon sequence variants compared to healthy controls (HC). The transfer of FS from ASD patients (FS–ASD) to mice decreased colonic barrier permeability by 29% and 58% compared to FS–HC for paracellular and transcellular permeability, respectively. These effects are associated with the reduced expression of the tight junction proteins JAM-A, ZO-2, cingulin, and proinflammatory cytokines TNFα and IL1β. In addition, the expression of glial and neuronal molecules was reduced by FS–ASD as compared to FS-HC in particular for those involved in neuronal connectivity (βIII-tubulin and synapsin decreased by 31% and 67%, respectively). Our data suggest that changes in microbiota composition in ASD may contribute to GI alterations, and in part, via ENS remodeling.


2019 ◽  
Vol 97 (9) ◽  
pp. 3845-3858 ◽  
Author(s):  
Mathilde Le Sciellour ◽  
Olivier Zemb ◽  
Isabelle Hochu ◽  
Juliette Riquet ◽  
Hélène Gilbert ◽  
...  

Abstract The present study aimed at investigating the impact of heat challenges on gut microbiota composition in growing pigs and its relationship with pigs’ performance and thermoregulation responses. From a total of 10 F1 sire families, 558 and 564 backcross Large White × Créole pigs were raised and phenotyped from 11 to 23 wk of age in temperate (TEMP) and in tropical (TROP) climates, respectively. In TEMP, all pigs were subjected to an acute heat challenge (3 wk at 29 °C) from 23 to 26 wk of age. Feces samples were collected at 23 wk of age both in TEMP and TROP climate (TEMP23 and TROP23 samples, respectively) and at 26 wk of age in TEMP climate (TEMP26 samples) for 16S rRNA analyses of fecal microbiota composition. The fecal microbiota composition significantly differed between the 3 environments. Using a generalized linear model on microbiota composition, 182 operational taxonomic units (OTU) and 2 pathways were differentially abundant between TEMP23 and TEMP26, and 1,296 OTU and 20 pathways between TEMP23 and TROP23. Using fecal samples collected at 23 wk of age, pigs raised under the 2 climates were discriminated with 36 OTU using a sparse partial least square discriminant analysis that had a mean classification error-rate of 1.7%. In contrast, pigs in TEMP before the acute heat challenge could be discriminated from the pigs in TEMP after the heat challenge with 32 OTU and 9.3% error rate. The microbiota can be used as biomarker of heat stress exposition. Microbiota composition revealed that pigs were separated into 2 enterotypes. The enterotypes were represented in both climates. Whatever the climate, animals belonging to the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype were 3.3 kg heavier (P < 0.05) at 11 wk of age than those belonging to the Lactobacillus-dominated enterotype. This latter enterotype was related to a 0.3 °C lower skin temperature (P < 0.05) at 23 wk of age. Following the acute heat challenge in TEMP, this enterotype had a less-stable rectal temperature (0.34 vs. 0.25 °C variation between weeks 23 and 24, P < 0.05) without affecting growth performance (P > 0.05). Instability of the enterotypes was observed in 34% of the pigs, switching from an enterotype to another between 23 and 26 wk of age after heat stress. Despite a lower microbial diversity, the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype was better adapted to heat stress conditions with lower thermoregulation variations.


2017 ◽  
Vol 312 (1) ◽  
pp. G15-G23 ◽  
Author(s):  
Milena Saqui-Salces ◽  
Amy C. Tsao ◽  
Merritt G. Gillilland ◽  
Juanita L. Merchant

The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Xiangwei Liu ◽  
Xihui Xu ◽  
Yingmei Zhang ◽  
Jun Ren

Background: Though autophagy including the selective mitophagy is essential for cellular homeostasis, its role in obese heart function remains controversial. Beclin-1 plays a cardinal role in conventional autophagy and has recently been implicated in alternative autophagy and mitophagy. This study was designed to examine the impact of Beclin-1 haploinsufficiency using heterozygous deletion of Beclin-1 (BCN-KO) on high fat diet (HFD)-induced cardiac anomalies. Methods and Results: Adult wild type (WT) and BCN-KO mice were fed low fat diet (LFD) or HFD for 12 weeks. HFD triggered comparable body weight gain in WT and BCN-KO mice. However, BCN-KO improved HFD-induced glucose intolerance and countered against HFD-induced cardiomyocyte contractile dysfunction manifested as decreased peak shortening, +dL/dt, -dL/dt and prolonged TR 90 . Levels of Beclin-1 were downregulated following HFD feeding although such effect was masked by BCN haploinsufficiency. Levels of autophagy markers LC3B-II/I and Atg5 were downregulated in a comparable manner in both HFD groups. Interestingly, Rab9, an essential regulator for alternative autophagy, was upregulated in HFD groups with a more pronounced effect in BCN-KO mice. Level of p62 was increased by HFD in WT but not BCN-KO group. Furthermore, the mitochondrial coupling protein for LC3B Bnip3 (also a key molecule for alternative autophagy-induced mitophagy) was upregulated in HFD groups with a more pronounced effect in BCN-KO mice. Moreover, Pink1 and AMPK phosphorylation, two key regulators in mitophagy were decreased by HFD in WT but not BCN-KO group. In line with these results, PGC-1 a (a marker of mitochondrial biogenesis) was downregulated by HFD, the effect of which was rescued by BCN-KO. Conclusion: Taken together, our data revealed that HFD led to cardiac contractile defect accompanied with dampened conventional autophagy and facilitated alternative autophagy. Our data suggested that adaptive mitophagy may play a pivotal role in BCN haploinsufficiency-induced beneficial effect. Such as beneficial effect was achieved through promoting HFD-induced alternative autophagy, which may contribute to increased mitophagy under HFD intake possibly via AMPK, Rab9 and Bnip3-mediated signaling pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mariangela Rondanelli ◽  
Clara Gasparri ◽  
Gabriella Peroni ◽  
Milena Anna Faliva ◽  
Maurizio Naso ◽  
...  

Several studies have described a strong correlation between diet, weight loss, and gut microbiota composition. The aim of this review was to evaluate the potential effects of energy-restricted diets, namely very low calorie diets (VLCDs), very low calorie ketogenic diets (VLCKDs), and very low carbohydrate diets (VLCarbDs), on the composition of the gut microbiota in humans. We performed a literature search using the following terms (with their abbreviations or acronyms): “very low calorie diet”, “very low calorie ketogenic diet”, “very low carbohydrate diet”, and “gut microbiota”. Our search strategy retrieved nine eligible studies. Overall, VLCDs and VLCarbDs affected the Bacteroidetes to Firmicutes ratio in obese patients, leading to a reduction in short-chain fatty acid production by fecal microbiota associated with Clostridial cluster XIVa. This reduction particularly affected Roseburia and Eubacterium rectale, the two most abundant butyrate-producing bacteria in human feces. VLCKDs preserved the core fecal microbiome, but altered the composition of fecal microbial populations in relation to the plasma metabolome and fecal bile acid composition. In particular, VLCKD-induced weight loss resulted in a reduction in E. rectale and Roseburia, an increase in Christensenellaceae and Akkermansia while not all studies show a decrease in Faecalibacterium prausnitzii. Although very few studies have analyzed the effects of VLCarbDs and VLCDs on gut microbiota, significant diet-induced changes in fecal microbiota composition have been observed. Further studies are needed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiping Zhu ◽  
Xuefan Wang ◽  
Bo Liu ◽  
Ziwen Yi ◽  
Yufei Zhao ◽  
...  

Silage is fed to horses in China and other areas in the world, however, knowledge about the impact of feeding silage on horse health is still limited. In the current study, 12 horses were assigned into two groups and fed ryegrass silage and ryegrass hay, respectively, for 8 weeks. High-throughput sequencing was applied to analyze fecal microbiota, while liquid chromatography–tandem mass spectrometry (LC–MS/MS) based metabolomics technique was used for blood metabolite profile to investigate the influence of feeding ryegrass silage (group S) compared to feeding ryegrass hay (group H) on equine intestinal and systemic health. Horses in group S had significantly different fecal microbiota and blood metabolomes from horses in group H. The results showed that Verrucomicrobia was significantly less abundant which plays important role in maintaining the mucus layer of the hindgut. Rikenellaceae and Christensenellaceae were markedly more abundant in group S and Rikenellaceae may be associated with some gut diseases and obesity. The metabolomics analysis demonstrated that ryegrass silage feeding significantly affected lipid metabolism and insulin resistance in horses, which might be associated with metabolic dysfunction. Furthermore, Pearson’s correlation analysis revealed some correlations between bacterial taxa and blood metabolites, which added more evidence to diet-fecal microbiota-health relationship. Overall, ryegrass silage feeding impacted systemic metabolic pathways in horses, especially lipid metabolism. This study provides evidence of effects of feeding ryegrass silage on horses, which may affect fat metabolism and potentially increase risk of insulin resistance. Further investigation will be promoted to provide insight into the relationship of a silage-based diet and equine health.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Ajit Sood ◽  
Arshdeep Singh ◽  
Vandana Midha ◽  
Ramit Mahajan ◽  
Dina Kao ◽  
...  

Abstract Background Fecal microbiota transplantation (FMT) is currently an approved treatment for recurrent and refractory Clostridioides difficile infection. However, its use in ulcerative colitis is at an early stage and significant gaps remain in our understanding of the mechanisms and logistics of its practical application. Methods and results This article aims to look into specific issues which remain unsettled for use of FMT in ulcerative colitis including donor and recipient selection, route of administration, and duration of therapy. We also discuss optimal ways to assess response to FMT and the current state of FMT regulations. In addition, we postulate the impact of diet on the microbiome profile of the donor and recipient. We also suggest a change in the nomenclature from FMT to fecal microbiome transfer. Conclusion FMT is an evolving therapy. There are several considerations for its use in UC but its use and role should be directed by further clinical trials.


Sign in / Sign up

Export Citation Format

Share Document