scholarly journals Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation

2021 ◽  
Vol 12 ◽  
Author(s):  
Paul B. L. George ◽  
David B. Fidler ◽  
Joy D. Van Nostrand ◽  
Jonathan A. Atkinson ◽  
Sacha J. Mooney ◽  
...  

Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the trajectories of such changes are not clear. We assessed microbial communities using phospholipid fatty acid profiling, metabarcoding, CO2 emissions, and functional gene microarrays in a decade-long C deprivation field experiment. We also assessed changes in a range of soil physicochemical properties, including using X-ray Computed Tomography imaging to assess differences in soil structure. Two sets of soils were deprived of C inputs by removing plant inputs for 10 years and 1 year, respectively. We found a reduction in diversity measures, after 10 years of C deprivation, which was unexpected based on previous research. Fungi appeared to be most impacted, likely due to competition for scarce resources after exhausting the available plant material. This suggestion was supported by evidence of bioindicator taxa in non-vegetated soils that may directly compete with or consume fungi. There was also a reduction in copies of most functional genes after 10 years of C deprivation, though gene copies increased for phytase and some genes involved in decomposing recalcitrant C and methanogenesis. Additionally, soils under C deprivation displayed expected reductions in pH, organic C, nitrogen, and biomass as well as reduced mean pore size, especially in larger pores. However, pore connectivity increased after 10 years of C deprivation contrary to expectations. Our results highlight concurrent collapse of soil structure and biodiversity following long-term C deprivation. Overall, this study shows the negative trajectory of continuous C deprivation and loss of organic matter on a wide range of soil quality indicators and microorganisms.

2001 ◽  
Vol 81 (3) ◽  
pp. 349-355 ◽  
Author(s):  
D. F. E. McArthur ◽  
P M Huang ◽  
L M Kozak

Research has suggested a link between the bioavailability of soil Cd and total soil organic matter. However, some research suggested a negative relationship between total soil organic matter and bioavailable soil Cd while other research suggested a positive relationship. This study investigated the relationship between soil Cd and both the quantity and quality of soil organic matter as influenced by long-term cultivation. Two Orthic Chernozemic surface soil samples, one from a virgin prairie and the other from an adjacent cultivated prairie, were collected from each of 12 different sites throughout southern Saskatchewan, Canada. The samples were analyzed for total organic C, total Cd, Cd availability index (CAI), and pH. The nature of the soil organic matter was investigated with 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy (13C CPMAS NMR). The total soil Cd, CAI, and total soil organic C of the cultivated soils were significantly lower than those of the virgin soils whereas the opposite trend was observed for the soil pH and the aromaticity of the organic C. The reduced CAI in the cultivated soils was related to the increase in both the soil pH and the aromaticity of the organic C. No relationship was found between the CAI and the soil organic C content, but a significant positive correlation was found between total organic C and total Cd in both the virgin and the cultivated soils. As well, a significant positive correlation was found between the fraction of total Cd removed from the soil after long-term cultivation and the corresponding fraction of organic C removed. Key words: Long-term cultivation, soil organic matter, 13C CPMAS NMR, cadmium


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11204
Author(s):  
Maria Viketoft ◽  
Laura G.A. Riggi ◽  
Riccardo Bommarco ◽  
Sara Hallin ◽  
Astrid R. Taylor

Addition of organic amendments is a commonly used practice to offset potential loss of soil organic matter from agricultural soils. The aim of the present study was to examine how long-term addition of organic matter affects the abundance of different soil biota across trophic levels and the role that the quality of the organic amendments plays. Here we used a 17-year-old fertilization experiment to investigate soil biota responses to four different organic fertilizers, compared with two mineral nitrogen fertilizers and no fertilization, where the organic fertilizers had similar carbon content but varied in their carbon to nitrogen ratios. We collected soil samples and measured a wide range of organisms belonging to different functional groups and trophic levels of the soil food web. Long-term addition of organic and mineral fertilizers had beneficial effects on the abundances of most soil organisms compared with unfertilized soil, but the responses differed between soil biota. The organic fertilizers generally enhanced bacteria and earthworms. Fungi and nematodes responded positively to certain mineral and organic fertilizers, indicating that multiple factors influenced by the fertilization may affect these heterogeneous groups. Springtails and mites were less affected by fertilization than the other groups, as they were present at relatively high abundances even in the unfertilized treatment. However, soil pH had a great influence on springtail abundance. In summary, the specific fertilizer was more important in determining the numerical and compositional responses of soil biota than whether it was mineral or organic. Overall, biennial organic amendments emerge as insufficient, by themselves, to promote soil organisms in the long run, and would need to be added annually or combined with other practices affecting soil quality, such as no or reduced tillage and other crop rotations, to have a beneficial effect.


2007 ◽  
Vol 28 (3) ◽  
pp. 104 ◽  
Author(s):  
Margaret M Roper ◽  
Vadakattu V S R Gupta

Soils are much more than a porous medium for supporting plant growth. Soils are living, because they contain a wide range of microorganisms including bacteria, fungi, algae, protozoa, nematodes and other fauna including microarthropods, macroarthropods, termites and earthworms. All play a crucial role in the biological function of soils including decomposition of organic matter, nutrient transformations, biological control, development of soil structure to mention a few. Until recently the complexity of life in the soil has been difficult to unravel, but new DNA and biochemical tools are providing insights into its phenotypic and functional diversity and capability, and should drive the development of managements that nurture biodiversity and ecosystem function.


2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


Geoderma ◽  
2019 ◽  
Vol 342 ◽  
pp. 75-84 ◽  
Author(s):  
Vladimír Šimanský ◽  
Martin Juriga ◽  
Jerzy Jonczak ◽  
Łukasz Uzarowicz ◽  
Wojciech Stępień

Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 435 ◽  
Author(s):  
R. C. Dalal ◽  
K. Y. Chan

The Australian cereal belt stretches as an arc from north-eastern Australia to south-western Australia (24˚S–40˚S and 125˚E–147˚E), with mean annual temperatures from 14˚C (temperate) to 26˚C (subtropical), and with annual rainfall ranging from 250 mm to 1500 mm. The predominant soil types of the cereal belt include Chromosols, Kandosols, Sodosols, and Vertosols, with significant areas of Ferrosols, Kurosols, Podosols, and Dermosols, covering approximately 20 Mha of arable cropping and 21 Mha of ley pastures. Cultivation and cropping has led to a substantial loss of soil organic matter (SOM) from the Australian cereal belt; the long-term SOM loss often exceeds 60% from the top 0–0.1 m depth after 50 years of cereal cropping. Loss of labile components of SOM such as sand-size or particulate SOM, microbial biomass, and mineralisable nitrogen has been even higher, thus resulting in greater loss in soil productivity than that assessed from the loss of total SOM alone. Since SOM is heterogeneous in nature, the significance and functions of its various components are ambiguous. It is essential that the relationship between levels of total SOM or its identif iable components and the most affected soil properties be established and then quantif ied before the concentrations or amounts of SOM and/or its components can be used as a performance indicator. There is also a need for experimentally verifiable soil organic C pools in modelling the dynamics and management of SOM. Furthermore, the interaction of environmental pollutants added to soil, soil microbial biodiversity, and SOM is poorly understood and therefore requires further study. Biophysically appropriate and cost-effective management practices for cereal cropping lands are required for restoring and maintaining organic matter for sustainable agriculture and restoration of degraded lands. The additional benefit of SOM restoration will be an increase in the long-term greenhouse C sink, which has the potentialto reduce greenhouse emissions by about 50 Mt CO2 equivalents/year over a 20-year period, although current improved agricultural practices can only sequester an estimated 23% of the potential soil C sink.


Soil Research ◽  
1997 ◽  
Vol 35 (6) ◽  
pp. 1301 ◽  
Author(s):  
P. W. Moody ◽  
S. A. Yo ◽  
R. L. Aitken

Total organic carbon (TC) in 32 acidic surface (0–10 cm) soils was divided into 3 fractions (C1, C2, and C3) based on oxidisability by different strengths of KMnO4 (33 mM and 167 mM). With the methodology used, ease of oxidation decreased in the order C1>C2>C3. Several fundamental soil chemical properties were also determined, i.e. ECEC, CEC at pH 6·5 (CEC6·5), slope of the charge curve (ΔCEC), pH buffer capacity, (pHBC), P sorption capacity using a single addition index (PSI150), and content of organically complexed Al. All soils had pH (1:5 water) <6·5, and comprised a wide range of soil types and clay contents. Multiple step-up regression indicated that C fractions were significantly (P < 0·05) correlated with ECEC, ΔCEC, CEC6·5, and pHBC. These results reinforce the critical importance of soil organic matter to the fundamental soil chemical properties of predominantly variable charge soils. The intercorrelations between the various oxidisable C fractions made it difficult to elucidate if degree of oxidisability had any bearing on the reactivity of the organic matter. ECEC was primarily correlated with C1, whereas all C fractions had highly significant (P < 0·01) effects on ΔCEC and pHBC. The fraction which was most difficult to oxidise, C3, made a significant (P < 0·01) contribution to CEC6·5 when combined with clay and ECEC in a multiple regression equation. Generally, one or other of the C fractions was better correlated with the fundamental soil chemical properties than TC. This simple empirical fractionation of soil organic C may therefore be a useful tool for assessing the effects of soil management on these properties.


2008 ◽  
Vol 147 (1) ◽  
pp. 31-42 ◽  
Author(s):  
H. ZHANG ◽  
M. XU ◽  
F. ZHANG

SUMMARYRice (Oryza sativaL.), wheat (Triticum aestivumL.) and maize (Zea maysL.) are the main crops grown in China. Applying organic manures is an important practice in sustaining soil fertility and agricultural productivity in these cropping systems. The current paper presents the effects of manure application on grain yields in nine long-term experiments that consist of one continuous maize, four wheat–maize and four rice-based cropping systems across a wide range of agro-ecological regions in China. The study shows that regular manure application can increase soil organic carbon (SOC) and grain yield across all the sites. Overall, regular use of manure results in larger increases in SOC in the maize and wheat–maize systems than in the rice-based systems. Application of manure tends to increase the grain yield in the maize and wheat–maize systems during the final years, but increases the grain yield in the rice-based systems during the initial years of the long-term experiments. There is only one site that shows significant improvement in the yield trend in association with the application of manure. The effects of manure on yield trends are probably determined by the initial yield and/or the ‘organic C effect’ that may cause gradual improvements in SOC and soil physical properties.


2004 ◽  
Vol 84 (1) ◽  
pp. 49-61 ◽  
Author(s):  
E. A. Paul ◽  
H. P. Collins ◽  
K. Paustian ◽  
E. T. Elliott ◽  
S. Frey ◽  
...  

Factors controlling soil organic matter (SOM) dynamics in soil C sequestration and N fertility were determined from multi-site analysis of long-term, crop rotation experiments in Western Canada. Analyses included bulk density, organic and inorganic C and N, particulate organic C (POM-C) and N (POM -N), and CO2-C evolved during laboratory incubation. The POM-C and POM-N contents varied with soil type. Differences in POM-C contents between treatments at a site (δPOM-C) were related (r2= 0.68) to treatment differences in soil C (δSOC). The CO2-C, evolved during laboratory incubation, was the most sensitive indicator of management effects. The Gray Luvisol (Breton, AB) cultivated plots had a fivefold difference in CO2-C release relative to a twofold difference in soil organic carbon (SOC). Soils from cropped, Black Chernozems (Melfort and Indian Head, SK) and Dark Brown Chernozems (Lethbridge, AB) released 50 to 60% as much CO2-C as grassland soils. Differences in CO2 evolution from the treatment with the lowest SOM on a site and that of other treatments (δCO2-C) in the early stages of the incubation were correlated to δPOM-C and this pool reflects short-term SOC storage. Management for soil fertility, such as N release, may differ from management for C sequestration. Key words: Multi-site analysis, soil management, soil C and N, POM-C and N, CO2 evolution


2006 ◽  
Vol 86 (1) ◽  
pp. 141-151 ◽  
Author(s):  
A. F. Plante ◽  
C. E. Stewart ◽  
R. T. Conant ◽  
K. Paustian ◽  
J. Six

Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous reports, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association. Key words: Soil organic C, tillage, residue management, N fertilization, silt, clay


Sign in / Sign up

Export Citation Format

Share Document