scholarly journals Good Vibrations: Structural Remodeling of Maturing Yeast Pre-40S Ribosomal Particles Followed by Cryo-Electron Microscopy

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1125 ◽  
Author(s):  
Ramtin Shayan ◽  
Dana Rinaldi ◽  
Natacha Larburu ◽  
Laura Plassart ◽  
Stéphanie Balor ◽  
...  

Assembly of eukaryotic ribosomal subunits is a very complex and sequential process that starts in the nucleolus and finishes in the cytoplasm with the formation of functional ribosomes. Over the past few years, characterization of the many molecular events underlying eukaryotic ribosome biogenesis has been drastically improved by the “resolution revolution” of cryo-electron microscopy (cryo-EM). However, if very early maturation events have been well characterized for both yeast ribosomal subunits, little is known regarding the final maturation steps occurring to the small (40S) ribosomal subunit. To try to bridge this gap, we have used proteomics together with cryo-EM and single particle analysis to characterize yeast pre-40S particles containing the ribosome biogenesis factor Tsr1. Our analyses lead us to refine the timing of the early pre-40S particle maturation steps. Furthermore, we suggest that after an early and structurally stable stage, the beak and platform domains of pre-40S particles enter a “vibrating” or “wriggling” stage, that might be involved in the final maturation of 18S rRNA as well as the fitting of late ribosomal proteins into their mature position.

2018 ◽  
Author(s):  
Dejian Zhou ◽  
Xing Zhu ◽  
Sanduo Zheng ◽  
Dan Tan ◽  
Meng-Qiu Dong ◽  
...  

AbstractAssembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates. How the highly intertwined structure of 60S large ribosomal subunits is established is unknown. Here, we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 Å resolution, revealing a half assembled subunit. Domains I, II and VI of 25S/5.8S rRNA tightly pack into a native-like substructure, but domains III, IV and V are not assembled. The structure contains 12 assembly factors and 19 ribosomal proteins, many of which are required for early processing of large subunit rRNA. The Brx1-Ebp2 complex would interfere with the assembly of domains IV and V. Rpf1, Mak16, Nsa1 and Rrp1 form a cluster that consolidates the joining of domains I and II. Our structure reveals a key intermediate on the path to the establishment of the global architecture of 60S subunits.


2021 ◽  
Author(s):  
Philipp Milkereit ◽  
Gisela Pöll ◽  
Michael Pilsl ◽  
Joachim Griesenbeck ◽  
Herbert Tschochner

In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.


2005 ◽  
Vol 388 (3) ◽  
pp. 819-826 ◽  
Author(s):  
Yaroslav SYDORSKYY ◽  
David J. DILWORTH ◽  
Brendan HALLORAN ◽  
Eugene C. YI ◽  
Taras MAKHNEVYCH ◽  
...  

Ribosome biogenesis in Saccharomyces cerevisiae occurs primarily in a specialized nuclear compartment termed the nucleolus within which the rRNA genes are transcribed by RNA polymerase I into a large 35 S rRNA precursor. The ensuing association/dissociation and catalytic activity of numerous trans-acting protein factors, RNAs and ribosomal proteins ultimately leads to the maturation of the precursor rRNAs into 25, 5.8 and 18 S rRNAs and the formation of mature cytoplasmic 40 and 60 S ribosomal subunits. Although many components involved in ribosome biogenesis have been identified, our understanding of this essential cellular process remains limited. In the present study we demonstrate a crucial role for the previously uncharacterized nucleolar protein Nop53p (Ypl146p) in ribosome biogenesis. Specifically, Nop53p appears to be most important for biogenesis of the 60 S subunit. It physically interacts with rRNA processing factors, notably Cbf5p and Nop2p, and co-fractionates specifically with pre-60 S particles on sucrose gradients. Deletion or mutations within NOP53 cause significant growth defects and display significant 60 S subunit deficiencies, an imbalance in the 40 S:60 S ratio, as revealed by polysome profiling, and defects in progression beyond the 27 S stage of 25 S rRNA maturation during 60 S biogenesis.


2017 ◽  
Author(s):  
Alain Scaiola ◽  
Cohue Peña ◽  
Melanie Weisser ◽  
Daniel Böhringer ◽  
Marc Leibundgut ◽  
...  

AbstractFinal maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre-RNA. Using cryo-electron microscopy (cryo-EM), we have determined the structure of a cytoplasmic pre-40S particle poised to initiate final maturation at a resolution of 3.4 Å. The structure reveals the extent of conformational rearrangements of the 3’ major and 3’ minor domains of the ribosomal RNA that take place during maturation, as well as the roles of the assembly factors Enp1, Ltv1, Rio2, Tsr1, and Pno1 in the process. Altogether, we provide a structural framework for the coordination of the final maturation events that drive a pre-40S particle towards the mature form capable of engaging in translation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0252497
Author(s):  
Gisela Pöll ◽  
Michael Pilsl ◽  
Joachim Griesenbeck ◽  
Herbert Tschochner ◽  
Philipp Milkereit

In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.


Author(s):  
Dushyant Jahagirdar ◽  
Vikash Jha ◽  
Kaustuv Basu ◽  
Josue Gomez-Blanco ◽  
Javier Vargas ◽  
...  

ABSTRACTIt is only after recent advances in cryo-electron microscopy that is now possible to describe at high resolution structures of large macromolecules that do not crystalize. Purified 30S subunits interconvert between the “active” and “inactive” conformations. The active conformation was described by crystallography in the early 2000s, but the structure of the inactive form at high resolution remains unsolved. Here we used cryo-electron microscopy to obtain the structure of the inactive conformation of the 30S subunit to 3.6Å resolution and study its motions. In the inactive conformation, three nucleotides at the 3’ end of the 16S rRNA cause the region of helix 44 forming the decoding center to adopt an unlatched conformation and the 3’ end of the 16S rRNA positions similarly to the mRNA during translation. Incubation of inactive 30S subunits at 42 °C reverts these structural changes. The position adopted by helix 44 dictates the most prominent motions of the 30S subunit. We found that extended exposures to low magnesium concentrations induces unfolding of large rRNA structural domains. The air-water interface to which ribosome subuints are exposed during sample preparation also peel off some ribosomal proteins. Overall this study provides new insights about the conformational space explored by the 30S ribosomal subunit when the ribosomal particles are free in solution.


2003 ◽  
Vol 23 (6) ◽  
pp. 2042-2054 ◽  
Author(s):  
Y. Sydorskyy ◽  
D. J. Dilworth ◽  
E. C. Yi ◽  
D. R. Goodlett ◽  
R. W. Wozniak ◽  
...  

ABSTRACT Kap123p is a yeast β-karyopherin that imports ribosomal proteins into the nucleus prior to their assembly into preribosomal particles. Surprisingly, Kap123p is not essential for growth, under normal conditions. To further explore the role of Kap123p in nucleocytoplasmic transport and ribosome biogenesis, we performed a synthetic fitness screen designed to identify genes that interact with KAP123. Through this analysis we have identified three other karyopherins, Pse1p/Kap121p, Sxm1p/Kap108p, and Nmd5p/Kap119p. We propose that, in the absence of Kap123p, these karyopherins are able to supplant Kap123p's role in import. In addition to the karyopherins, we identified Rai1p, a protein previously implicated in rRNA processing. Rai1p is also not essential, but deletion of the RAI1 gene is deleterious to cell growth and causes defects in rRNA processing, which leads to an imbalance of the 60S/40S ratio and the accumulation of halfmers, 40S subunits assembled on polysomes that are unable to form functional ribosomes. Rai1p localizes predominantly to the nucleus, where it physically interacts with Rat1p and pre-60S ribosomal subunits. Analysis of the rai1/kap123 double mutant strain suggests that the observed genetic interaction results from an inability to efficiently export pre-60S subunits from the nucleus, which arises from a combination of compromised Kap123p-mediated nuclear import of the essential 60S ribosomal subunit export factor, Nmd3p, and a ΔRAI1-induced decrease in the overall biogenesis efficiency.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christian Montellese ◽  
Jasmin van den Heuvel ◽  
Caroline Ashiono ◽  
Kerstin Dörner ◽  
André Melnik ◽  
...  

Establishment of translational competence represents a decisive cytoplasmic step in the biogenesis of 40S ribosomal subunits. This involves final 18S rRNA processing and release of residual biogenesis factors, including the protein kinase RIOK1. To identify novel proteins promoting the final maturation of human 40S subunits, we characterized pre-ribosomal subunits trapped on RIOK1 by mass spectrometry, and identified the deubiquitinase USP16 among the captured factors. We demonstrate that USP16 constitutes a component of late cytoplasmic pre-40S subunits that promotes the removal of ubiquitin from an internal lysine of ribosomal protein RPS27a/eS31. USP16 deletion leads to late 40S subunit maturation defects, manifesting in incomplete processing of 18S rRNA and retarded recycling of late-acting ribosome biogenesis factors, revealing an unexpected contribution of USP16 to the ultimate step of 40S synthesis. Finally, ubiquitination of RPS27a appears to depend on active translation, pointing at a potential connection between 40S maturation and protein synthesis.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


2021 ◽  
Vol 7 (21) ◽  
pp. eabg5628
Author(s):  
Julien Bous ◽  
Hélène Orcel ◽  
Nicolas Floquet ◽  
Cédric Leyrat ◽  
Joséphine Lai-Kee-Him ◽  
...  

The antidiuretic hormone arginine-vasopressin (AVP) forms a signaling complex with the V2 receptor (V2R) and the Gs protein, promoting kidney water reabsorption. Molecular mechanisms underlying activation of this critical G protein–coupled receptor (GPCR) signaling system are still unknown. To fill this gap of knowledge, we report here the cryo–electron microscopy structure of the AVP-V2R-Gs complex. Single-particle analysis revealed the presence of three different states. The two best maps were combined with computational and nuclear magnetic resonance spectroscopy constraints to reconstruct two structures of the ternary complex. These structures differ in AVP and Gs binding modes. They reveal an original receptor-Gs interface in which the Gαs subunit penetrates deep into the active V2R. The structures help to explain how V2R R137H or R137L/C variants can lead to two severe genetic diseases. Our study provides important structural insights into the function of this clinically relevant GPCR signaling complex.


Sign in / Sign up

Export Citation Format

Share Document