scholarly journals Regulation of Ribosomal Protein OperonsrplM-rpsI,rpmB-rpmG, andrplU-rpmAat the Transcriptional and Translational Levels

2016 ◽  
Vol 198 (18) ◽  
pp. 2494-2502 ◽  
Author(s):  
Leonid V. Aseev ◽  
Ludmila S. Koledinskaya ◽  
Irina V. Boni

ABSTRACTIt is widely assumed that in the best-characterized model bacteriumEscherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for severalE. colir-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time thein vivoregulation of three r-protein operons,rplM-rpsI,rpmB-rpmG, andrplU-rpmA. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomallacZgene, we show here that at the translation level only one of these operons,rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5′ untranslated region (UTR) of the operon mRNA, whilerpmB-rpmGandrplU-rpmAare not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression ofE. colir-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor ofrplM-rpsIexpressionin vivo, acting at a target within therplMtranslation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.IMPORTANCEIt is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.

2013 ◽  
Vol 57 (9) ◽  
pp. 4260-4266 ◽  
Author(s):  
Chun Chen ◽  
Carla A. Blumentritt ◽  
Meredith M. Curtis ◽  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
...  

ABSTRACTStreptomycin binds to the bacterial ribosome and disrupts protein synthesis by promoting misreading of mRNA. Restrictive mutations on the ribosomal subunit protein S12 confer a streptomycin resistance (Strr) phenotype and concomitantly increase the accuracy of the decoding process and decrease the rate of translation. Spontaneous Strrmutants ofEscherichia coliO157:H7 have been generated forin vivostudies to promote colonization and to provide a selective marker for this pathogen. The locus of enterocyte effacement (LEE) ofE. coliO157:H7 encodes a type III secretion system (T3SS), which is required for attaching and effacing to the intestinal epithelium. In this study, we observed decreases in both the expression and secretion levels of the T3SS translocated proteins EspA and EspB inE. coliO157:H7 Strrrestrictive mutants, which have K42T or K42I mutations in S12. However, mildly restrictive (K87R) and nonrestrictive (K42R) mutants showed slight or indistinguishable changes in EspA and EspB secretion. Adherence and actin staining assays indicated that restrictive mutations compromised the formation of attaching and effacing lesions inE. coliO157:H7. Therefore, we suggest thatE. coliO157:H7 strains selected for Strrshould be thoroughly characterized beforein vivoandin vitroexperiments that assay for LEE-directed phenotypes and that strains carrying nonrestrictive mutations such as K42R make better surrogates of wild-type strains than those carrying restrictive mutations.


2017 ◽  
Vol 199 (11) ◽  
Author(s):  
Shreya Ahana Ayyub ◽  
Divya Dobriyal ◽  
Umesh Varshney

ABSTRACT Initiation factor 3 (IF3) is one of the three conserved prokaryotic translation initiation factors essential for protein synthesis and cellular survival. Bacterial IF3 is composed of a conserved architecture of globular N- and C-terminal domains (NTD and CTD) joined by a linker region. IF3 is a ribosome antiassociation factor which also modulates selection of start codon and initiator tRNA. All the functions of IF3 have been attributed to its CTD by in vitro studies. However, the in vivo relevance of these findings has not been investigated. By generating complete and partial IF3 (infC) knockouts in Escherichia coli and by complementation analyses using various deletion constructs, we show that while the CTD is essential for E. coli survival, the NTD is not. Polysome profiles reaffirm that CTD alone can bind to the 30S ribosomal subunit and carry out the ribosome antiassociation function. Importantly, in the absence of the NTD, bacterial growth is compromised, indicating a role for the NTD in the fitness of cellular growth. Using reporter assays for in vivo initiation, we show that the NTD plays a crucial role in the fidelity function of IF3 by avoiding (i) initiation from non-AUG codons and (ii) initiation by initiator tRNAs lacking the three highly conserved consecutive GC pairs (in the anticodon stem) known to function in concert with IF3. IMPORTANCE Initiation factor 3 regulates the fidelity of eubacterial translation initiation by ensuring the formation of an initiation complex with an mRNA bearing a canonical start codon and with an initiator tRNA at the ribosomal P site. Additionally, IF3 prevents premature association of the 50S ribosomal subunit with the 30S preinitiation complex. The significance of our work in Escherichia coli is in demonstrating that while the C-terminal domain alone sustains E. coli for its growth, the N-terminal domain adds to the fidelity of initiation of protein synthesis and to the fitness of the bacterial growth.


2014 ◽  
Vol 13 (6) ◽  
pp. 727-737 ◽  
Author(s):  
Khan Umaer ◽  
Martin Ciganda ◽  
Noreen Williams

ABSTRACTLarge ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. InTrypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention.


Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
J.F. Hainfeld ◽  
J.S. Wall

The aim of this study is to understand the mechanism of 16S rRNA folding into the compact structure of the small 30S subunit of E. coli ribosome. The assembly of the 30S E. coli ribosomal subunit is a sequence of specific interactions of 16S rRNA with 21 ribosomal proteins (S1-S21). Using dedicated high resolution STEM we have monitored structural changes induced in 16S rRNA by the proteins S4, S8, S15 and S20 which are involved in the initial steps of 30S subunit assembly. S4 is the first protein to bind directly and stoichiometrically to 16S rRNA. Direct binding also occurs individually between 16S RNA and S8 and S15. However, binding of S20 requires the presence of S4 and S8. The RNA-protein complexes are prepared by the standard reconstitution procedure, dialyzed against 60 mM KCl, 2 mM Mg(OAc)2, 10 mM-Hepes-KOH pH 7.5 (Buffer A), freeze-dried and observed unstained in dark field at -160°.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

AbstractRibosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


1993 ◽  
Vol 13 (5) ◽  
pp. 2835-2845
Author(s):  
M Deshmukh ◽  
Y F Tsay ◽  
A G Paulovich ◽  
J L Woolford

Ribosomal protein L1 from Saccharomyces cerevisiae binds 5S rRNA and can be released from intact 60S ribosomal subunits as an L1-5S ribonucleoprotein (RNP) particle. To understand the nature of the interaction between L1 and 5S rRNA and to assess the role of L1 in ribosome assembly and function, we cloned the RPL1 gene encoding L1. We have shown that RPL1 is an essential single-copy gene. A conditional null mutant in which the only copy of RPL1 is under control of the repressible GAL1 promoter was constructed. Depletion of L1 causes instability of newly synthesized 5S rRNA in vivo. Cells depleted of L1 no longer assemble 60S ribosomal subunits, indicating that L1 is required for assembly of stable 60S ribosomal subunits but not 40S ribosomal subunits. An L1-5S RNP particle not associated with ribosomal particles was detected by coimmunoprecipitation of L1 and 5S rRNA. This pool of L1-5S RNP remained stable even upon cessation of 60S ribosomal subunit assembly by depletion of another ribosomal protein, L16. Preliminary results suggest that transcription of RPL1 is not autogenously regulated by L1.


2020 ◽  
Vol 89 (1) ◽  
pp. e00401-20
Author(s):  
Raghuveer Singh ◽  
Jessica A. Slade ◽  
Mary Brockett ◽  
Daniel Mendez ◽  
George W. Liechti ◽  
...  

ABSTRACTThe Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapFCt function in vivo in C. trachomatis. We reasoned that, because DapFCt utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapFCt DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapFCt is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis. Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Yu-Feng Zhou ◽  
Meng-Ting Tao ◽  
Yu-Zhang He ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACT Antimicrobial resistance among uropathogens has increased the rates of infection-related morbidity and mortality. Antofloxacin is a novel fluoroquinolone with broad-spectrum antibacterial activity against urinary Gram-negative bacilli, such as Escherichia coli. This study monitored the in vivo efficacy of antofloxacin using bioluminescent imaging and determined pharmacokinetic (PK)/pharmacodynamic (PD) targets against E. coli isolates in a neutropenic murine thigh infection model. The PK properties were determined after subcutaneous administration of antofloxacin at 2.5, 10, 40, and 160 mg/kg of body weight. Following thigh infection, the mice were treated with 2-fold-increasing doses of antofloxacin from 2.5 to 80 mg/kg administered every 12 h. Efficacy was assessed by quantitative determination of the bacterial burdens in thigh homogenates and was compared with the bioluminescent density. Antofloxacin demonstrated both static and killing endpoints in relation to the initial burden against all study strains. The PK/PD index area under the concentration-time curve (AUC)/MIC correlated well with efficacy (R 2 = 0.92), and the dose-response relationship was relatively steep, as observed with escalating doses of antofloxacin. The mean free drug AUC/MIC targets necessary to produce net bacterial stasis and 1-log10 and 2-log10 kill for each isolate were 38.7, 66.1, and 147.0 h, respectively. In vivo bioluminescent imaging showed a rapid decrease in the bioluminescent density at free drug AUC/MIC exposures that exceeded the stasis targets. The integration of these PD targets combined with the results of PK studies with humans will be useful in setting optimal dosing regimens for the treatment of urinary tract infections due to E. coli.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Piotr Bielecki ◽  
Uthayakumar Muthukumarasamy ◽  
Denitsa Eckweiler ◽  
Agata Bielecka ◽  
Sarah Pohl ◽  
...  

ABSTRACTmRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression ofEscherichia colipathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associatedE. coliisolates to different phylogenetic groups. Whereas thein vivogene expression profiles of the majority of genes were conserved among 21E. colistrains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribedin vivorelative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease.IMPORTANCEUrinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenicEscherichia colistrains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenicE. coligene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.


Sign in / Sign up

Export Citation Format

Share Document