scholarly journals The Impact of Mutation L138F/L210F on the Orai Channel: A Molecular Dynamics Simulation Study

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoqian Zhang ◽  
Hua Yu ◽  
Xiangdong Liu ◽  
Chen Song

The calcium release-activated calcium channel, composed of the Orai channel and the STIM protein, plays a crucial role in maintaining the Ca2+ concentration in cells. Previous studies showed that the L138F mutation in the human Orai1 creates a constitutively open channel independent of STIM, causing severe myopathy, but how the L138F mutation activates Orai1 is still unclear. Here, based on the crystal structure of Drosophila melanogaster Orai (dOrai), molecular dynamics simulations for the wild-type (WT) and the L210F (corresponding to L138F in the human Orai1) mutant were conducted to investigate their structural and dynamical properties. The results showed that the L210F dOrai mutant tends to have a more hydrated hydrophobic region (V174 to F171), as well as more dilated basic region (K163 to R155) and selectivity filter (E178). Sodium ions were located deeper in the mutant than in the wild-type. Further analysis revealed two local but essential conformational changes that may be the key to the activation. A rotation of F210, a previously unobserved feature, was found to result in the opening of the K163 gate through hydrophobic interactions. At the same time, a counter-clockwise rotation of F171 occurred more frequently in the mutant, resulting in a wider hydrophobic gate with more hydration. Ultimately, the opening of the two gates may facilitate the opening of the Orai channel independent of STIM.

2021 ◽  
Author(s):  
Xiaoqian Zhang ◽  
Hua Yu ◽  
Xiangdong Liu ◽  
Chen Song

The calcium release-activated calcium (CRAC) channel, composed of the Orai channel and the STIM protein, plays a crucial role in maintaining the Ca2+ concentration in cells. Previous studies showed that the L138F mutation in the human Orai1 creates a constitutively open channel independent of STIM, causing severe myopathy, but how the L138F mutation activates Orai1 is still unclear. Here, based on the crystal structure of Drosophila melanogaster Orai (dOrai), molecular dynamics simulations for the wild-type (WT) and the L210F (corresponding to L138F in the human Orai1) mutant were conducted to investigate their structural and dynamical properties. The results showed that the L210F dOrai mutant tends to have a more hydrated hydrophobic region (V174 to F171), as well as more dilated basic region (K163 to R155) and selectivity filter (E178). Sodium ions were located deeper in the mutant than in the WT. Further analysis revealed two local but essential conformational changes that may be the key to the activation. A rotation of F210, a previously undescribed feature, was found to result in the opening of the K163 gate through hydrophobic interactions. At the same time, a counter-clockwise rotation of F171 occurred more frequently in the mutant, resulting in a wider hydrophobic gate with more hydration. Ultimately, the opening of the two gates may facilitate the opening of the Orai channel independent of STIM.


2015 ◽  
Vol 9 ◽  
pp. BBI.S25626 ◽  
Author(s):  
Khadija Amine ◽  
Lamia Miri ◽  
Adil Naimi ◽  
Rachid Saile ◽  
Abderrahmane El Kharrim ◽  
...  

There is some evidence linking the mammalian paraoxonase-1 (PON1) loops (L1 and L2) to an increased flexibility and reactivity of its active site with potential substrates. The aim of this work is to study the structural, dynamical, and functional effects of the most flexible regions close to the active site and to determine the impact of mutations on the protein. For both models, wild-type (PON1wild) and PON1 mutant (PON1mut) models, the L1 loop and Q/R and L/M mutations were constructed using MODELLER software. Molecular dynamics simulations of 20 ns at 300 K on fully modeled PON1wild and PON1mut apoenzyme have been done. Detailed analyses of the root-mean-square deviation and fluctuations, H-bonding pattern, and torsion angles have been performed. The PON1wild results were then compared with those obtained for the PON1mut. Our results show that the active site in the wild-type structure is characterized by two distinct movements of opened and closed conformations of the L1 and L2 loops. The alternating and repetitive movement of loops at specific times is consistent with the presence of 11 defined hydrogen bonds. In the PON1mut, these open-closed movements are therefore totally influenced and repressed by the Q/R and L/M mutations. In fact, these mutations seem to impact the PON1mut active site by directly reducing the catalytic core flexibility, while maintaining a significant mobility of the switch regions delineated by the loops surrounding the active site. The impact of the studied mutations on structure and dynamics proprieties of the protein may subsequently contribute to the loss of both flexibility and activity of the PON1 enzyme.


2011 ◽  
Vol 194-196 ◽  
pp. 2220-2224
Author(s):  
Hui Qing Lan ◽  
Zheng Ling Kang

The growth of amorphous carbon films via deposition is investigated using molecular dynamics simulation with a modified Tersoff potential. The impact energy of carbon atoms ranges from 1 to 50 eV and the temperature of the diamond substrate is 300 K. The effects of the incident energy on the growth dynamics and film structure are studied in a detail. Simulation results show that the mobility of surface atoms in the cascade region is enhanced by impacting energetic carbon ions, especially at moderate energy, which favors the growth of denser and smoother films with better adhesion to the substrate. Our results agree qualitatively with the experimental observation.


2012 ◽  
Vol 11 (04) ◽  
pp. 907-924 ◽  
Author(s):  
DAWEI HUANG ◽  
XIAOHUI LI ◽  
ZHILONG XIU

Inhibitors of histone deacetylases (HDACs) have become an attractive class of anticancer agent. To understand the interaction between HDAC8 and inhibitors, including "pan-" inhibitors that inhibit many HDACs isoforms and selective inhibitors with no linker domain, docking and molecular dynamics simulation were conducted. Docking results showed the presence of π-π interactions between "linkerless" inhibitors and the aromatic amino acid residues of HDAC8 in the active site. Binding between HDAC8 and inhibitors was also stabilized by hydrogen bond and hydrophobic interaction. In molecular dynamics simulations, the zinc ion was shown to coordinate one more atom of HDAC8-"linkerless" inhibitor complexes than HDAC8-"pan-" inhibitor complexes. Persistent hydrogen bonds also existed between Tyr306 of HDAC8 and some inhibitors. When inhibitors with large cap groups bound to the active pocket of HDAC8, Phe152 and Met274 shifted from their initial positions and the entrance of the active pocket became more open, resulting in the formation of sub-pocket. Hydrophobic interactions contributed most favorably to the binding free energy between HDAC8 and inhibitors. Lys33, Asp178, Asp267, Tyr306 and Leu308 of HDAC8 were favorable for binding with all inhibitors.


2020 ◽  
pp. 096739112093524
Author(s):  
Jiafang Xu ◽  
Moussa Camara ◽  
Hualin Liao ◽  
Hong Guo ◽  
Kouassi Louis Kra ◽  
...  

In the present study, we performed a molecular dynamics simulation of the intercalation of poly( N-isopropyl acrylamide) (NIPAM)3 and poly( N-vinyl caprolactam) (NVCL)3 trimers into Na-montmorillonite (Na-Mt) to evaluate their effects on the interlayer structure and the stability of hydrated Na-Mt. The impact of both trimers on the interlayer species and their dynamics properties at different temperatures in a canonical ensemble (NVT) were investigated. The results showed that the electrostatic forces exerted by Na cations on H2O molecules and the interlayer H2O molecular arrangement are not affected by the rise in temperature after adding both trimers. Trimer addition reinforced the structure of interlayer H2O molecules so that the effect of temperature increase on them became negligible. The structural dynamics evolution of the radius of gyration of both trimers showed the existence of conformation changes when temperature increased. These conformational changes are more complex in the case of (NVCL)3 than (NIPAM)3 due to its large monomers. Both trimers reduced the mobility of interlayer particles with a better inhibition effect obtained for (NVCL)3 compared to (NIPAM)3. The concentration profile of interlayers’ species showed the affinity of Na cations for clay mineral surfaces while H2O molecules moved away. Compared these two trimers, the most stable state of Na-Mt is achieved with (NVCL)3. These results could help highlight the inhibition properties of (NIPAM)3 and (NVCL)3 on hydrated Na-Mt and to predict its stability against changes in environmental conditions.


2019 ◽  
Author(s):  
Adam M. Damry ◽  
Marc M. Mayer ◽  
Aron Broom ◽  
Natalie K. Goto ◽  
Roberto A. Chica

AbstractProtein structures are dynamic, undergoing specific motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual substitutions of core residues in DANCER-3, a streptococcal protein G domain β1 (Gβ1) variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native Gβ1 structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how conformational dynamics can appear in a stable globular fold, a critical step in the molecular evolution of new dynamics-linked functions.


2021 ◽  
Author(s):  
Ryan C Maloney ◽  
Mingzhen Zhang ◽  
HYUNBUM JANG ◽  
Ruth Nussinov

Oncogenic mutations in the serine/threonine kinase B-Raf, particularly the V600E mutation, are frequent in cancer, making it a major drug target. Although much is known about B-Raf's active and inactive states, questions remain about the mechanism by which the protein changes between these two states. Here, we utilize molecular dynamics to investigate both wild-type and V600E B-Raf to gain mechanistic insights into the impact of the Val to Glu mutation. The results show that the wild-type and mutant follow similar activation pathways involving an extension of the activation loop and an inward motion of the αC-helix. The V600E mutation, however, destabilizes the inactive state by disrupting hydrophobic interactions present in the wild-type structure while the active state is stabilized through the formation of a salt bridge between Glu600 and Lys507. Additionally, when the activation loop is extended, the αC-helix is able to move between an inward and outward orientation as long as the DFG motif adopts a specific orientation. In that orientation Phe595 rotates away from the αC-helix, allowing the formation of a salt bridge between Lys483 and Glu501. These mechanistic insights have implications for the development of new Raf inhibitors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hao Li ◽  
Qiancheng Rui ◽  
Xiwen Wang ◽  
Wei Yu

A non-equilibrium molecular dynamics simulation method is conducted to study the thermal conductivity (TC) of silicon nanowires (SiNWs) with different types of defects. The impacts of defect position, porosity, temperature, and length on the TC of SiNWs are analyzed. The numerical results indicate that SiNWs with surface defects have higher TC than SiNWs with inner defects, the TC of SiNWs gradually decreases with the increase of porosity and temperature, and the impact of temperature on the TC of SiNWs with defects is weaker than the impact on the TC of SiNWs with no defects. The TC of SiNWs increases as their length increases. SiNWs with no defects have the highest corresponding frequency of low-frequency peaks of phonon density of states; however, when SiNWs have inner defects, the lowest frequency is observed. Under the same porosity, the average phonon participation of SiNWs with surface defects is higher than that of SiNWs with inner defects.


2020 ◽  
Vol 21 (13) ◽  
pp. 4699 ◽  
Author(s):  
Zhennan Zhao ◽  
Tingting Huang ◽  
Jiazhong Li

Opioid analgesics such as morphine have indispensable roles in analgesia. However, morphine use can elicit side effects such as respiratory depression and constipation. It has been reported that G protein-biased agonists as substitutes for classic opioid agonists can alleviate (or even eliminate) these side effects. The compounds PZM21 and TRV130 could be such alternatives. Nevertheless, there are controversies regarding the efficacy and G protein-biased ability of PZM21. To demonstrate a rationale for the reduced biasing agonism of PZM21 compared with that of TRV130 at the molecular level, we undertook a long-term molecular dynamics simulation of the μ-opioid receptor (MOR) upon the binding of three ligands: morphine, TRV130, and PZM21. We found that the delayed movement of the W2936.48 (Ballesteros–Weinstein numbering) side chain was a factor determining the dose-dependent agonism of PZM21. Differences in conformational changes of W3187.35, Y3267.43, and Y3367.53 in PZM21 and TRV130 explained the observed differences in bias between these ligands. The extent of water movements across the receptor channel was correlated with analgesic effects. Taken together, these data suggest that the observed differences in conformational changes of the studied MOR–ligand complexes point to the low-potency and lower bias effects of PZM21 compared with the other two ligands, and they lay the foundation for the development of G protein-biased agonists.


2019 ◽  
Vol 20 (1) ◽  
pp. 224 ◽  
Author(s):  
Lianhua Piao ◽  
Zhou Chen ◽  
Qiuye Li ◽  
Ranran Liu ◽  
Wei Song ◽  
...  

Specific interactions between scaffold protein SH3 and multiple ankyrin repeat domains protein 3 (Shank3) and synapse-associated protein 90/postsynaptic density-95–associated protein (SAPAP) are essential for excitatory synapse development and plasticity. In a bunch of human neurological diseases, mutations on Shank3 or SAPAP are detected. To investigate the dynamical and thermodynamic properties of the specific binding between the N-terminal extended PDZ (Post-synaptic density-95/Discs large/Zonaoccludens-1) domain (N-PDZ) of Shank3 and the extended PDZ binding motif (E-PBM) of SAPAP, molecular dynamics simulation approaches were used to study the complex of N-PDZ with wild type and mutated E-PBM peptides. To compare with the experimental data, 974QTRL977 and 966IEIYI970 of E-PBM peptide were mutated to prolines to obtain the M4P and M5P system, respectively. Conformational analysis shows that the canonical PDZ domain is stable while the βN extension presents high flexibility in all systems, especially for M5P. The high flexibility of βN extension seems to set up a barrier for the non-specific binding in this area and provide the basis for specific molecular recognition between Shank3 and SAPAP. The wild type E-PBM tightly binds to N-PDZ during the simulation while loss of binding is observed in different segments of the mutated E-PBM peptides. Energy decomposition and hydrogen bonds analysis show that M4P mutations only disrupt the interactions with canonical PDZ domain, but the interactions with βN1′ remain. In M5P system, although the interactions with βN1′ are abolished, the binding between peptide and the canonical PDZ domain is not affected. The results indicate that the interactions in the two-binding site, the canonical PDZ domain and the βN1′ extension, contribute to the binding between E-PBM and N-PDZ independently. The binding free energies calculated by MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) are in agreement with the experimental binding affinities. Most of the residues on E-PBM contribute considerably favorable energies to the binding except A963 and D964 in the N-terminal. The study provides information to understand the molecular basis of specific binding between Shank3 and SAPAP, as well as clues for design of peptide inhibitors.


Sign in / Sign up

Export Citation Format

Share Document