scholarly journals Identification and Validation of a Prognostic Prediction Model of m6A Regulator-Related LncRNAs in Hepatocellular Carcinoma

2021 ◽  
Vol 8 ◽  
Author(s):  
Chen Jin ◽  
Rui Li ◽  
Tuo Deng ◽  
Jialiang Li ◽  
Yan Yang ◽  
...  

Hepatocellular carcinoma (HCC) is a highly invasive malignancy prone to recurrence, and patients with HCC have a low 5-year survival rate. Long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of HCC. N6-methyladenosine methylation (m6A) is the most common modification influencing cancer development. Here, we used the transcriptome of m6A regulators and lncRNAs, along with the complete corresponding clinical HCC patient information obtained from The Cancer Genome Atlas (TCGA), to explore the role of m6A regulator-related lncRNA (m6ARlnc) as a prognostic biomarker in patients with HCC. The prognostic m6ARlnc was selected using Pearson correlation and univariate Cox regression analyses. Moreover, three clusters were obtained via consensus clustering analysis and further investigated for differences in immune infiltration, immune microenvironment, and prognosis. Subsequently, nine m6ARlncs were identified with Lasso-Cox regression analysis to construct the prognostic signature m6A-9LPS for patients with HCC in the training cohort (n = 226). Based on m6A-9LPS, the risk score for each case was calculated. Patients were then divided into high- and low-risk subgroups based on the cutoff value set by the X-tile software. m6A-9LPS showed a strong prognosis prediction ability in the validation cohort (n = 116), the whole cohort (n = 342), and even clinicopathological stratified survival analysis. Combining the risk score and clinical characteristics, we established a nomogram for predicting the overall survival (OS) of patients. To further understand the mechanism underlying the m6A-9LPS-based classification of prognosis differences, KEGG and GO enrichment analyses, competitive endogenous RNA (ceRNA) network, chemotherapeutic agent sensibility, and immune checkpoint expression level were assessed. Taken together, m6A-9LPS could be used as a precise prediction model for the prognosis of patients with HCC, which will help in individualized treatment of HCC.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lunxu Li ◽  
Shilin Xia ◽  
Xueying Shi ◽  
Xu Chen ◽  
Dong Shang

AbstractHepatocellular carcinoma (HCC) is one of the main causes of cancer deaths globally. Immunotherapy is becoming increasingly important in the cure of advanced HCC. Thus it is essential to identify biomarkers for treatment response and prognosis prediction. We searched publicly available databases and retrieved 465 samples of genes from The Cancer Genome Atlas (TCGA) database and 115 tumor samples from Gene Expression Omnibus (GEO). Meanwhile, we used the ImmPort database to determine the immune-related genes as well. Weighted gene correlation network analysis, Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used to identify the key immune related genes (IRGs) which are closely related to prognosis. Gene set enrichment analysis (GSEA) was implemented to explore the difference of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway between Immune high- and low-risk score groups. Finally, we made a prognostic nomogram including Immune-Risk score and other clinicopathologic factors. A total of 318 genes from prognosis related modules were identified through weighted gene co-expression network analysis (WGCNA). 46 genes were strongly linked to prognosis after univariate Cox analysis. We constructed a seven genes prognostic signature which showed powerful prediction ability in both training cohort and testing cohort. 16 significant KEGG pathways were identified between high- and low- risk score groups using GSEA analysis. This study identified and verified seven immune-related prognostic biomarkers for the patients with HCC, which have potential value for immune modulatory and therapeutic targets.


2021 ◽  
Author(s):  
Jingdun Xie ◽  
Zhenhua Qi ◽  
Xiaolin Luo ◽  
Fang Yan ◽  
Wei Xing ◽  
...  

Background: N6-Methyladenosine (m6A) RNA methylation of eukaryotic mRNA is involved in the progression of various tumors. We aimed to investigate m6A-related genes and m6A regulators in hepatocellular carcinoma (HCC) and their association with prognosis in HCC.Methods: We downloaded liver cancer sample data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database. A total of 21 m6A regulators and 1258 m6A-related genes were then analyzed by consensus clustering, Spearman’s correlation, GO, KEGG, LASSO Cox regression, and univariate Cox regression analyses. Finally, we constructed a risk prognostic model.Results: We obtained 192 candidate m6A-related genes and 3 m6A regulators, including YTHDF1, YTHDF2, and YTHDC1. The expression of these genes and regulators differed significantly in different stages of HCC. Based on Cox regression analysis, 19 of 98 m6A-related prognostic genes were obtained to construct a risk score model. The 1- and 3-year area under the curves (AUCs) among HCC patients were greater than 0.7. Finally, based on analysis of mutation differences between high- and low-risk score groups, we determined that TP53 had the highest mutation frequency in the high-risk HCC patient group, whereas titin (TTN) had the highest mutation frequency in the low-risk HCC patient group.Conclusion: This study comprehensively analyzed m6A regulators and m6A-related genes through an integrated bioinformatic analysis, including expression, clustering, protein–protein interaction, and prognosis, thus providing novel insights into the roles of m6A regulators and m6A-related genes in HCC.


2021 ◽  
Author(s):  
Li Wang ◽  
Jialin Qu ◽  
Man Jiang ◽  
Na Zhou ◽  
Zhixuan Ren ◽  
...  

Abstract Background Iron is a nutrient essential for hemoglobin synthesis, DNA synthesis, and energy metabolism in all mammals. Iron metabolic involved in numerous types of cancers including hepatocellular cancer. In this study, we aim to identify prognostic model that based on iron metabolic-related genes that could effectively predict the prognosis for HCC patients. Methods The RNA microarray and clinical data of HCC patients that obtained from The Cancer Genome Atlas (TCGA) database. We identify the clusters of HCC patients with different clinical outcome performed by consensus clustering analysis. Four iron metabolic-related genes (FLVCR1, FTL, HIF1A, HMOX1) were screen for prognostic model by performed the Cox regression analysis. The efficacy of prognostic model was validated by the International Cancer Genome Consortium (ICGC) database. Meantime, the expressions value of FLVCR1, FTL, HIF1A, HMOX1 was performed using Oncomine database, the Human Protein Atlas and Kaplan Meier-plotter. Result The patients with low-risk score have better prognosis than high risk score both in TCGA cohort and ICGC cohort. The prognostic model showed well performance for predicting the prognosis of HCC patients than other clinicopathological parameters by OS-related ROC curves. Conclusion Our survival models that based on Iron metabolic can be independent risk factors for hepatocellular carcinoma patients.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


2021 ◽  
Vol 10 ◽  
Author(s):  
Liang Zhao ◽  
Jiayue Zhang ◽  
Zhiyuan Liu ◽  
Yu Wang ◽  
Shurui Xuan ◽  
...  

Alternative splicing (AS) of pre-mRNA has been widely reported to be associated with the progression of malignant tumors. However, a systematic investigation into the prognostic value of AS events in glioblastoma (GBM) is urgently required. The gene expression profile and matched AS events data of GBM patients were obtained from The Cancer Genome Atlas Project (TCGA) and TCGA SpliceSeq database, respectively. 775 AS events were identified as prognostic factors using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) cox model was performed to narrow down candidate AS events, and a risk score model based on several AS events were developed subsequently. The risk score-based signature was proved as an efficient predictor of overall survival and was closely related to the tumor purity and immunosuppression in GBM. Combined similarity network fusion and consensus clustering (SNF-CC) analysis revealed two distinct GBM subtypes based on the prognostic AS events, and the associations between this novel molecular classification and clinicopathological factors, immune cell infiltration, as well as immunogenic features were further explored. We also constructed a regulatory network to depict the potential mechanisms that how prognostic splicing factors (SFs) regulate splicing patterns in GBM. Finally, a nomogram incorporating AS events signature and other clinical-relevant covariates was built for clinical application. This comprehensive analysis highlights the potential implications for predicting prognosis and clinical management in GBM.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoqing Yu ◽  
Jingsong Zhang ◽  
Rui Yang ◽  
Chun Li

Objective. Many studies have found that long noncoding RNAs (lncRNAs) are differentially expressed in hepatocellular carcinoma (HCC) and closely associated with the occurrence and prognosis of HCC. Since patients with HCC are usually diagnosed in late stages, more effective biomarkers for early diagnosis and prognostic prediction are in urgent need. Methods. The RNA-seq data of liver hepatocellular carcinoma (LIHC) were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs and mRNAs were obtained using the edgeR package. The single-sample networks of the 371 tumor samples were constructed to identify the candidate lncRNA biomarkers. Univariate Cox regression analysis was performed to further select the potential lncRNA biomarkers. By multivariate Cox regression analysis, a 3-lncRNA-based risk score model was established on the training set. Then, the survival prediction ability of the 3-lncRNA-based risk score model was evaluated on the testing set and the entire set. Function enrichment analyses were performed using Metascape. Results. Three lncRNAs (RP11-150O12.3, RP11-187E13.1, and RP13-143G15.4) were identified as the potential lncRNA biomarkers for LIHC. The 3-lncRNA-based risk model had a good survival prediction ability for the patients with LIHC. Multivariate Cox regression analysis proved that the 3-lncRNA-based risk score was an independent predictor for the survival prediction of patients with LIHC. Function enrichment analysis indicated that the three lncRNAs may be associated with LIHC via their involvement in many known cancer-associated biological functions. Conclusion. This study could provide novel insights to identify lncRNA biomarkers for LIHC at a molecular network level.


2021 ◽  
Author(s):  
ligong lu ◽  
Shaoqing Liu ◽  
Shengni Hua ◽  
Zhenlin Zhang ◽  
Meixiao Zhan ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, and the systematic exploration of its prognostic indicators is urgently needed. In this study, we obtained 12 IRGs for the construction of a risk score prediction model in HCC by bioinformatics analysis. Methods Differentially expressed genes were screened using the R software edgeR package. Functional enrichment analysis was performed through gene ontology analyses as well as the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Single factor and multi-factor Cox analysis were employed for survival analysis. We used the Timer software to examine the correlation between risk score and tumor-infiltrating immune cells. Results We identified 3,215 up-regulated and 1,044 down-regulated genes in HCC tissues based on a cohort from The Cancer Genome Atlas (TCGA). Differentially expressed immune-related genes (IRGs) and survival-associated IRGs were further identified. We also integrated multivariate Cox regression analyses to obtain 12 IRGs for the construction of a risk score prediction model, whose performance was verified using the Kaplan-Meier survival and receiver operating characteristic curve analyses. Our findings suggest that the risk score was associated with clinical characteristics and the infiltration of immune cells in HCC patients. Conclusions We obtained a risk score prediction model of 12 IRGs in HCC by bioinformatics analysis and confirmed its performance.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yajuan Du ◽  
Ying Gao

Abstract Background There is growing evidence that pseudogenes may serve as prognostic biomarkers in several cancers. The present study was designed to develop and validate an accurate and robust pseudogene pairs-based signature for the prognosis of hepatocellular carcinoma (HCC). Methods RNA-sequencing data from 374 HCC patients with clinical follow-up information were obtained from the Cancer Genome Atlas (TCGA) database and used in this study. Survival-related pseudogene pairs were identified, and a signature model was constructed by Cox regression analysis (univariate and least absolute shrinkage and selection operator). All individuals were classified into high- and low-risk groups based on the optimal cutoff. Subgroups analysis of the novel signature was conducted and validated in an independent cohort. Pearson correlation analyses were carried out between the included pseudogenes and the protein-coding genes based on their expression levels. Enrichment analysis was performed to predict the possible role of the pseudogenes identified in the signature. Results A 19-pseudogene pair signature, which included 21 pseudogenes, was established. Patients in high-risk group demonstrated an increased the risk of adverse prognosis in the TCGA cohort and the external cohort (all P < 0.001). The novel pseudogene signature was independent of other conventional clinical variables used for survival prediction in HCC patients in the two cohorts revealed by the multivariate Cox regression analysis (all P < 0.001). Subgroup analysis further demonstrated the diagnostic value of the signature across different stages, grades, sexes, and age groups. The C-index of the prognostic signature was 0.761, which was not only higher than that of several previous risk models but was also much higher than that of a single age, sex, grade, and stage risk model. Furthermore, functional analysis revealed that the potential biological mechanisms mediated by these pseudogenes are primarily involved in cytokine receptor activity, T cell receptor signaling, chemokine signaling, NF-κB signaling, PD-L1 expression, and the PD-1 checkpoint pathway in cancer. Conclusion The novel proposed and validated pseudogene pair-based signature may serve as a valuable independent prognostic predictor for predicting survival of patients with HCC.


2021 ◽  
Author(s):  
Gen-hua Yang

Abstract Background and AimStudies have recently shown that immune-related lncRNAs play a vital role in the occurrence and development of human malignancies. However, the study in gastric cancer (GC) remains unclear. Here, we aimed to identify immune-related lncRNAs and construct a risk score model to predict the prognosis of GC patients.Methods:RNA expression data and clinical characteristics of GC were download from The Cancer Genome Atlas (TCGA) database. Immune genes were obtained from the Molecular Signatures Database (MSigDB). Immune-related lncRNAs were acquired by correlation coefficient between the immune genes and lncRNAs using “limma R” package and Cytoscape 3.6.1. The risk score model was constructed by univariate and multivariate Cox regression, and its prognostic value was verified in TCGA cohort. Results:A total of 146 immune-related lncRNAs were obtained compared 375 GC samples with 32 normal samples. A five immune-related lncRNA (AP001528.2, LINC02542, LINC02526, PVT1 and LINC01094) risk score model was constructed to predict prognosis of GC patients by Cox regression analysis. Moreover, GC patients with higher risk score had a poorer overall survival than that with lower risk score (P<0.001). Furthermore, ROC analysis revealed that the risk score model had the best predictive effect compared with clinicopathological features during 5 years followed-up (AUC = 0.679). Indeed, PCA analysis showed that the patients in the low- and high- group were significantly distinguished in different directions based on the risk score model. Conclusion:This study indicated that a five immune-related lncRNA risk score model possessed a satisfactory predictive prognosis, which might be potential prognostic biomarkers and immunotherapy targets for GC patients in future.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zi-An Chen ◽  
Hui Tian ◽  
Dong-Mei Yao ◽  
Yuan Zhang ◽  
Zhi-Jie Feng ◽  
...  

BackgroundFerroptosis is a novel form of regulated cell death involved in tumor progression. The role of ferroptosis-related lncRNAs in hepatocellular carcinoma (HCC) remains unclear.MethodsRNA-seq and clinical data for HCC patients were downloaded from The Cancer Genome Atlas (TCGA) Genomic Data Commons (GDC) portal. Bioinformatics methods, including weighted gene coexpression network analysis (WGCNA), Cox regression, and least absolute shrinkage and selection operator (LASSO) analysis, were used to identify signature markers for diagnosis/prognosis. The tumor microenvironment, immune infiltration and functional enrichment were compared between the low-risk and high-risk groups. Subsequently, small molecule drugs targeting ferroptosis-related signature components were predicted via the L1000FWD and PubChem databases.ResultsThe prognostic model consisted of 2 ferroptosis-related mRNAs (SLC1A5 and SLC7A11) and 8 ferroptosis-related lncRNAs (AC245297.3, MYLK-AS1, NRAV, SREBF2-AS1, AL031985.3, ZFPM2-AS1, AC015908.3, MSC-AS1). The areas under the curves (AUCs) were 0.830 and 0.806 in the training and test groups, respectively. Decision curve analysis (DCA) revealed that the ferroptosis-related signature performed better than all pathological characteristics. Multivariate Cox regression analysis showed that the risk score was an independent prognostic factor. The survival probability of low- and high-risk patients could be clearly distinguished by the principal component analysis (PCA) plot. The risk score divided HCC patients into two distinct groups in terms of immune status, especially checkpoint gene expression, which was further supported by the Gene Ontology (GO) biological process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, several small molecule drugs (SIB-1893, geldanamycin and PD-184352, etc) targeting ferroptosis-related signature components were identified for future reference.ConclusionWe constructed a new ferroptosis-related mRNA/lncRNA signature for HCC patients. The model can be used for prognostic prediction and immune evaluation, providing a reference for immunotherapies and targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document