scholarly journals The novel immune-related genes predict the prognosis of patients with hepatocellular carcinoma

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lunxu Li ◽  
Shilin Xia ◽  
Xueying Shi ◽  
Xu Chen ◽  
Dong Shang

AbstractHepatocellular carcinoma (HCC) is one of the main causes of cancer deaths globally. Immunotherapy is becoming increasingly important in the cure of advanced HCC. Thus it is essential to identify biomarkers for treatment response and prognosis prediction. We searched publicly available databases and retrieved 465 samples of genes from The Cancer Genome Atlas (TCGA) database and 115 tumor samples from Gene Expression Omnibus (GEO). Meanwhile, we used the ImmPort database to determine the immune-related genes as well. Weighted gene correlation network analysis, Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used to identify the key immune related genes (IRGs) which are closely related to prognosis. Gene set enrichment analysis (GSEA) was implemented to explore the difference of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway between Immune high- and low-risk score groups. Finally, we made a prognostic nomogram including Immune-Risk score and other clinicopathologic factors. A total of 318 genes from prognosis related modules were identified through weighted gene co-expression network analysis (WGCNA). 46 genes were strongly linked to prognosis after univariate Cox analysis. We constructed a seven genes prognostic signature which showed powerful prediction ability in both training cohort and testing cohort. 16 significant KEGG pathways were identified between high- and low- risk score groups using GSEA analysis. This study identified and verified seven immune-related prognostic biomarkers for the patients with HCC, which have potential value for immune modulatory and therapeutic targets.

2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chen Jin ◽  
Rui Li ◽  
Tuo Deng ◽  
Jialiang Li ◽  
Yan Yang ◽  
...  

Hepatocellular carcinoma (HCC) is a highly invasive malignancy prone to recurrence, and patients with HCC have a low 5-year survival rate. Long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of HCC. N6-methyladenosine methylation (m6A) is the most common modification influencing cancer development. Here, we used the transcriptome of m6A regulators and lncRNAs, along with the complete corresponding clinical HCC patient information obtained from The Cancer Genome Atlas (TCGA), to explore the role of m6A regulator-related lncRNA (m6ARlnc) as a prognostic biomarker in patients with HCC. The prognostic m6ARlnc was selected using Pearson correlation and univariate Cox regression analyses. Moreover, three clusters were obtained via consensus clustering analysis and further investigated for differences in immune infiltration, immune microenvironment, and prognosis. Subsequently, nine m6ARlncs were identified with Lasso-Cox regression analysis to construct the prognostic signature m6A-9LPS for patients with HCC in the training cohort (n = 226). Based on m6A-9LPS, the risk score for each case was calculated. Patients were then divided into high- and low-risk subgroups based on the cutoff value set by the X-tile software. m6A-9LPS showed a strong prognosis prediction ability in the validation cohort (n = 116), the whole cohort (n = 342), and even clinicopathological stratified survival analysis. Combining the risk score and clinical characteristics, we established a nomogram for predicting the overall survival (OS) of patients. To further understand the mechanism underlying the m6A-9LPS-based classification of prognosis differences, KEGG and GO enrichment analyses, competitive endogenous RNA (ceRNA) network, chemotherapeutic agent sensibility, and immune checkpoint expression level were assessed. Taken together, m6A-9LPS could be used as a precise prediction model for the prognosis of patients with HCC, which will help in individualized treatment of HCC.


2020 ◽  
Author(s):  
Andi Ma ◽  
Yukai Sun ◽  
Racheal O. Ogbodu ◽  
Ling Xiao ◽  
Haibing Deng ◽  
...  

Abstract Background: It is well known that long non-coding RNAs (lncRNAs) play a vital role in cancer. We aimed to explore the prognostic value of potential immune-related lncRNAs in hepatocellular carcinoma (HCC). Methods: Validated the established lncRNA signature of 343 patients with HCC from The Cancer Genome Atlas (TCGA) and 81 samples from Gene Expression Omnibus (GEO). Immune-related lncRNAs for HCC prognosis were evaluated using Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. LASSO analysis was performed to calculate a risk score formula to explore the difference in overall survival between high- and low-risk groups in TCGA, which was verified using GEO, Gene Ontology (GO), and pathway-enrichment analysis. These analyses were used to identify the function of screened genes and construct a co-expression network of these genes. Results: Using computational difference algorithms and lasso Cox regression analysis, the differentially expressed and survival-related immune-related genes (IRGs) among patients with HCC were established as five novel immune-related lncRNA signatures (AC099850.3, AL031985.3, PRRT3-AS1, AC023157.3, MSC-AS1). Patients in the low‐risk group showed significantly better survival than patients in the high‐risk group ( P = 3.033e−05). The signature identified can be an effective prognostic factor to predict patient survival. The nomogram showed some clinical net benefits predicted by overall survival. In order to explore its underlying mechanism, several methods of enrichment were elucidated using Gene Set Enrichment Analysis. Conclusion: Identifying five immune-related lncRNA signatures has important clinical implications for predicting patient outcome and guiding tailored therapy for patients with HCC with further prospective validation.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Guolin Wu ◽  
Zhenfeng Deng ◽  
Zongrui Jin ◽  
Jilong Wang ◽  
Banghao Xu ◽  
...  

Background. The prognosis of pancreatic adenocarcinoma (PAAD) is extremely poor and has not been improved. Thus, an effective method to assess the prognosis of patients must be established to improve their survival rate. Method. This study investigated immune-related genes that could be used as potential therapeutic targets for PAAD. Level 3 gene expression data from the PAAD cohort and the relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. For validation, other PAAD datasets (DSE62452) were downloaded from the Gene Expression Omnibus (GEO) database. The PAAD datasets from TCGA and GEO were used to screen immune-related genes through the Molecular Signatures Database using gene set enrichment analysis. Then, the overlapping immune-related genes of the two datasets were identified. Coexpression networks of the immune-related genes were constructed. Results. A signature of three immune-related genes (CKLF, ERAP2, and EREG) was identified in patients with PAAD. The signature could be used to divide the patients with PAAD into high- and low-risk groups based on their median risk score. Multivariate Cox regression analysis was performed to determine the independent prognostic factors of PAAD. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to assess the prediction accuracy of the prognostic signature. Last, a nomogram was established to assess the individualized prognosis prediction model based on the clinical characteristics and risk score of the TCGA PAAD dataset. The accuracy of the prognostic signature was further evaluated through functional evaluation and principal component analysis. Conclusions. The results indicated that the signature of three immune-related genes had excellent predictive value for PAAD. These findings might help improve personalized treatment and medical decisions.


2021 ◽  
Author(s):  
Jingdun Xie ◽  
Zhenhua Qi ◽  
Xiaolin Luo ◽  
Fang Yan ◽  
Wei Xing ◽  
...  

Background: N6-Methyladenosine (m6A) RNA methylation of eukaryotic mRNA is involved in the progression of various tumors. We aimed to investigate m6A-related genes and m6A regulators in hepatocellular carcinoma (HCC) and their association with prognosis in HCC.Methods: We downloaded liver cancer sample data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database. A total of 21 m6A regulators and 1258 m6A-related genes were then analyzed by consensus clustering, Spearman’s correlation, GO, KEGG, LASSO Cox regression, and univariate Cox regression analyses. Finally, we constructed a risk prognostic model.Results: We obtained 192 candidate m6A-related genes and 3 m6A regulators, including YTHDF1, YTHDF2, and YTHDC1. The expression of these genes and regulators differed significantly in different stages of HCC. Based on Cox regression analysis, 19 of 98 m6A-related prognostic genes were obtained to construct a risk score model. The 1- and 3-year area under the curves (AUCs) among HCC patients were greater than 0.7. Finally, based on analysis of mutation differences between high- and low-risk score groups, we determined that TP53 had the highest mutation frequency in the high-risk HCC patient group, whereas titin (TTN) had the highest mutation frequency in the low-risk HCC patient group.Conclusion: This study comprehensively analyzed m6A regulators and m6A-related genes through an integrated bioinformatic analysis, including expression, clustering, protein–protein interaction, and prognosis, thus providing novel insights into the roles of m6A regulators and m6A-related genes in HCC.


2020 ◽  
Author(s):  
Li Liu ◽  
She Tian ◽  
Zhu Li ◽  
Yongjun Gong ◽  
Hao Zhang

Abstract Background : Hepatocellular carcinoma (HCC) is one of the most common clinical malignant tumors, resulting in high mortality and poor prognosis. Studies have found that LncRNA plays an important role in the onset, metastasis and recurrence of hepatocellular carcinoma. The immune system plays a vital role in the development, progression, metastasis and recurrence of cancer. Therefore, immune-related lncRNA can be used as a novel biomarker to predict the prognosis of hepatocellular carcinoma. Methods : The transcriptome data and clinical data of HCC patients were obtained by using The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA‑LIHC), and immune-related genes were extracted from the Molecular Signatures Database (IMMUNE RESPONSE M19817 and IMMUNE SYSTEM PROCESS M13664). By constructing the co-expression network and Cox regression analysis, 13 immune-lncRNAs was identified to predict the prognosis of HCC patients. Patients were divided into high risk group and low risk group by using the risk score formula, and the difference in overall survival (OS) between the two groups was reflected by Kaplan-Meier survival curve. The time - dependent receiver operating characteristics (ROC) analysis and principal component analysis (PCA) were used to evaluate 13 immune -lncRNAs signature. Results : Through TCGA - LIHC extracted from 343 cases of patients with hepatocellular carcinoma RNA - Seq data and clinical data, 331 immune-related genes were extracted from the Molecular Signatures Database , co-expression networks and Cox regression analysis were constructed, 13 immune-lncRNAs signature was identified as biomarkers to predict the prognosis of patients. At the same time using the risk score median divided the patients into high risk and low risk groups, and through the Kaplan-Meier survival curve analysis found that high-risk group of patients' overall survival (OS) less low risk group of patients. The AUC value of the ROC curve is 0.828, and principal component analysis (PCA) results showed that patients could be clearly divided into two parts by immune-lncRNAs, which provided evidence for the use of 13 immune-lncRNAs signature as prognostic markers. Conclusion : Our study identified 13 immune-lncRNAs signature that can effectively predict the prognosis of HCC patients, which may be a new prognostic indicator for predicting clinical outcomes.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Honglan Guo ◽  
Qinqiao Fan

Background. We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. Method. With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). Results. HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948–0.983) in the TCGA cohort and 0.956 (95% CI: 0.932–0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001 ). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. Conclusion. HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.


Author(s):  
Dafeng Xu ◽  
Yu Wang ◽  
Jincai Wu ◽  
Yuliang Zhang ◽  
Zhehao Liu ◽  
...  

Background: The prognosis of patients with hepatocellular carcinoma (HCC) is negatively affected by the lack of effective prognostic indicators. The change of tumor immune microenvironment promotes the development of HCC. This study explored new markers and predicted the prognosis of HCC patients by systematically analyzing immune characteristic genes.Methods: Immune-related genes were obtained, and the differentially expressed immune genes (DEIGs) between tumor and para-cancer samples were identified and analyzed using gene expression profiles from TCGA, HCCDB, and GEO databases. An immune prognosis model was also constructed to evaluate the predictive performance in different cohorts. The high and low groups were divided based on the risk score of the model, and different algorithms were used to evaluate the tumor immune infiltration cell (TIIC). The expression and prognosis of core genes in pan-cancer cohorts were analyzed, and gene enrichment analysis was performed using clusterProfiler. Finally, the expression of the hub genes of the model was validated by clinical samples.Results: Based on the analysis of 730 immune-related genes, we identified 64 common DEIGs. These genes were enriched in the tumor immunologic related signaling pathways. The first 15 genes were selected using RankAggreg analysis, and all the genes showed a consistent expression trend across multi-cohorts. Based on lasso cox regression analysis, a 5-gene signature risk model (ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1) was constructed. The signature has strong robustness and can stabilize different cohorts (TCGA-LIHC, HCCDB18, and GSE14520). Compared with other existing models, our model has better performance. CIBERSORT was used to assess the landscape maps of 22 types of immune cells in TCGA, GSE14520, and HCCDB18 cohorts, and found a consistent trend in the distribution of TIIC. In the high-risk score group, scores of Macrophages M1, Mast cell resting, and T cells CD8 were significantly lower than those of the low-risk score group. Different immune expression characteristics, lead to the different prognosis. Western blot demonstrated that ATG10, PRKCD, and SPP1 were highly expressed in cancer tissues, while IL18RAP and SLC11A1 expression in cancer tissues was lower. In addition, IL18RAP has a highly positive correlation with B cell, macrophage, Neutrophil, Dendritic cell, CD8 cell, and CD4 cell. The SPP1, PRKCD, and SLC11A1 genes have the strongest correlation with macrophages. The expression of ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1 genes varies among different immune subtypes and between different T stages.Conclusion: The 5-immu-gene signature constructed in this study could be utilized as a new prognostic marker for patients with HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhipeng Zhu ◽  
Mengyu Song ◽  
Wenhao Li ◽  
Mengying Li ◽  
Sihan Chen ◽  
...  

Hepatocellular carcinoma is a common malignant tumor with poor prognosis, poor treatment effect, and lack of effective biomarkers. In this study, bioinformatics analysis of immune-related genes of hepatocellular carcinoma was used to construct a multi-gene combined marker that can predict the prognosis of patients. The RNA expression data of hepatocellular carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database, and immune-related genes were obtained from the IMMPORT database. Differential analysis was performed by Wilcox test to obtain differentially expressed genes. Univariate Cox regression analysis, lasso regression analysis and multivariate Cox regression analysis were performed to establish a prognostic model of immune genes, a total of 5 genes (HDAC1, BIRC5, SPP1, STC2, NR6A1) were identified to construct the models. The expression levels of 5 genes in HCC tissues were significantly different from those in paracancerous tissues. The Kaplan-Meier survival curve showed that the risk score calculated according to the prognostic model was significantly related to the overall survival (OS) of HCC. The receiver operating characteristic (ROC) curve confirmed that the prognostic model had high accuracy. Independent prognostic analysis was performed to prove that the risk value can be used as an independent prognostic factor. Then, the gene expression data of hepatocellular carcinoma in the ICGC database was used as a validation data set for the verification of the above steps. In addition, we used the CIBERSORT software and TIMER database to conduct immune infiltration research, and the results showed that the five genes of the model and the risk score have a certain correlation with the content of immune cells. Moreover, through Gene Set Enrichment Analysis (GSEA) and the construction of protein interaction networks, we found that the p53-mediated signal transduction pathway is a potentially important signal pathway for hepatocellular carcinoma and is positively regulated by certain genes in the prognostic model. In conclusion, this study provides potential targets for predicting the prognosis and treatment of hepatocellular carcinoma patients, and also provides new ideas about the correlation between immune genes and potential pathways of hepatocellular carcinoma.


2021 ◽  
Author(s):  
Meimei Liu ◽  
Qiong Fang ◽  
Yanping Huang ◽  
Jin Zhou ◽  
Qi Wang

Abstract Background: Extensive research has revealed that costimulatory molecules play central roles in mounting anti-tumor immune responses and long non‐coding RNA (lncRNA) is an important regulatory factor in the development of various cancers. However, their roles in liver hepatocellular carcinoma (HCC) remain unexplored. In this study, we aimed to explore costimulatory molecule-related lncRNAs in HCC and construct a prognostic signature to predict prognosis and improve clinical outcomes with HCC patients.Methods: The data we used for bioinformatics analysis were downloaded from The Cancer Genome Atlas database. Costimulatory molecules were obtained from the known literature. The R software, SPSS and GraphPad Prism were used for mapping and statistical analysis.Results: A five costimulatory molecule-related lncRNAs based risk model was initially constructed through lasso and Cox regression analysis. Moreover, multivariate regression suggested that the risk score was a significant prognostic risk factor in HCC. Samples in high- and low-risk groups exhibited significantly different in gene set enrichment analysis and immune infiltration analysis. Importantly, we found that the AC099850.3 were significantly related to cell proliferation in HCC according to the colony formation and CCK8 assays.Conclusion: In summary, we first identified and validated a novel costimulatory molecule-related survival model and we found that AC099850.3 is closely associated with clinical stage and could remarkably facilitate cell proliferation in HCC, making it potential to be a novel therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document