scholarly journals Recent Advances in Basic Research for CSF1R-Microglial Encephalopathy

2021 ◽  
Vol 13 ◽  
Author(s):  
Yan-Li Wang ◽  
Fang-Ze Wang ◽  
Runzhi Li ◽  
Jiwei Jiang ◽  
Xiangrong Liu ◽  
...  

Colony-stimulating factor-1 receptor-microglial encephalopathy is a rare rapidly progressive dementia resulting from colony-stimulating factor-1 receptor (CSF1R) mutations, also named pigmentary orthochromatic leukodystrophy (POLD), hereditary diffuse leukoencephalopathy with spheroids (HDLS), adult-onset leukoencephalopathy with axonal spheroids, and pigmented glia (ALSP) and CSF1R-related leukoencephalopathy. CSF1R is primarily expressed in microglia and mutations normally directly lead to changes in microglial number and function. Many animal models have been constructed to explore pathogenic mechanisms and potential therapeutic strategies, including zebrafish, mice, and rat models which are with CSF1R monogenic mutation, biallelic or tri-allelic deletion, or CSF1R-null. Although there is no cure for patients with CSF1R-microglial encephalopathy, microglial replacement therapy has become a topical research area. This review summarizes CSF1R-related pathogenetic mutation sites and mechanisms, especially the feasibility of the microglia-original immunotherapy.

1996 ◽  
Vol 270 (4) ◽  
pp. L650-L658 ◽  
Author(s):  
M. Ikegami ◽  
T. Ueda ◽  
W. Hull ◽  
J. A. Whitsett ◽  
R. C. Mulligan ◽  
...  

Mice made granulocyte macrophage-colony stimulating factor (GM-CSF)-deficient by homologous recombination maintain normal steady-state hematopoiesis but have an alveolar accumulation of surfactant lipids and protein that is similar to pulmonary alveolar proteinosis in humans. We asked how GM-CSF deficiency alters surfactant metabolism and function in mice. Alveolar and lung tissue saturated phosphatidylcholine (Sat PC) were increased six- to eightfold in 7- to 9-wk-old GM-CSF-deficient mice relative to controls. Incorporation of radiolabeled palmitate and choline into Sat PC was higher in GM-CSF deficient mice than control mice, and no loss of labeled Sat PC occurred from the lungs of GM-CSF-deficient mice. Secretion of radiolabeled Sat PC to the alveolus was similar in GM-CSF-deficient and control mice. Labeled Sat PC and surfactant protein A (SP-A) given by tracheal instillation were cleared rapidly in control mice, but there was no measurable loss from the lungs of GM-CSF-deficient mice. The function of the surfactant from GM-CSF-deficient mice was normal when tested in preterm surfactant-deficient rabbits. GM-CSF deficiency results in a catabolic defect for Sat PC and SP-A.


2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi-Ming Chen ◽  
Wei-Ting Hung ◽  
Wan-Chun Chang ◽  
Chia-Wei Hsieh ◽  
Wen-Hung Chung ◽  
...  

Adult-onset Still’s disease (AOSD) is a rare and inflammatory disorder characterized by spiking fever, rash, arthritis, and multisystemic involvement. HLA has been shown to be associated with AOSD; however, it could not explain the innate immunity and autoinflammatory characteristics of AOSD. To assess the genetic susceptibility of AOSD, we conducted a genome-wide association study (GWAS) on a cohort of 70 AOSD cases and 688 controls following a replication study of 36 cases and 200 controls and meta-analysis. The plasma concentrations of associated gene product were determined. The GWAS, replication, and combined sample analysis confirmed that SNP rs11102024 on 5′-upstream of CSF1 encoding macrophage colony-stimulating factor (M-CSF) was associated with AOSD (P=1.20×10-8, OR (95% CI): 3.28 (2.25~4.79)). Plasma levels of M-CSF increased in AOSD patients (n=82, median: 9.31 pg/mL), particularly in the cases with activity score≥6 (n=42, 10.94 pg/mL), compared to the healthy donors (n=68, 5.31 pg/mL) (P<0.0001). Patients carrying rs11102024TT genotype had higher M-CSF levels (median: 20.28 pg/mL) than those with AA genotype (6.82 pg/mL) (P<0.0001) or AT genotype (11.61 pg/mL) (P=0.027). Patients with systemic pattern outcome were associated with elevated M-CSF and frequently observed in TT carriers. Our data suggest that genetic variants near CSF1 are associated with AOSD and the rs11102024 T allele links to higher M-CSF levels and systemic outcome. These results provide a promising initiative for the early intervention and therapeutic target of AOSD. Further investigation is needed to have better understandings and the clinical implementation of genetic variants nearby CSF1 in AOSD.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2478-2484 ◽  
Author(s):  
KR Schibler ◽  
KW Liechty ◽  
WL White ◽  
RD Christensen

Abstract We postulated that defective generation of granulocyte colony- stimulating factor (G-CSF) by cells of newborn infants might underlie their deficiencies in upregulating neutrophil production and function during bacterial infection. To test this, we isolated monocytes from the blood of preterm neonates, term neonates, and adults and, after stimulation with various concentrations of interleukin-1 alpha (IL-1 alpha) or lipopolysaccharide (LPS), quantified G-CSF concentrations in cell supernatants and G-CSF mRNA in cell lysates. When stimulated with plateau concentrations of IL-1 alpha for 24 hours, G-CSF concentrations were higher in supernatants of adult cells (8,699 +/- 5,529 pg/10(6) monocytes) than in those from term infants (2,557 +/- 442 pg, P < .05) or from preterm infants (879 +/- 348 pg, P < .05 v adults). When stimulated with plateau concentrations of LPS, supernatants of monocytes from preterm neonates had less G-CSF than did those from term neonates or adults. G-CSF mRNA content was low in cells from preterm infants, higher in those from term infants, and highest in those from adults. On the basis of the in vitro studies, we speculated that serum G-CSF concentrations might be less elevated in neutropenic neonates than in neutropenic adults. Indeed, serum concentrations were relatively low in all nonneutropenic subjects; 92 +/- 34 pg/mL (mean +/- SEM) in 10 preterm neonates, 114 +/- 21 pg/mL in 16 term neonates, and 45 +/- 13 pg/mL in 11 healthy adults. Serum concentrations were not elevated in 7 neutropenic neonates (39 +/- 17 pg/mL) but were in 8 neutropenic adults (2101 +/- 942 pg/mL, P < .05 v healthy adults). Other studies suggested that the lower G-CSF production in neonates is not counterbalanced by a heightened sensitivity of G-CSF--responsive progenitors to G-CSF. Therefore, we speculate that newborn infants, particularly those delivered prematurely, generate comparatively low quantities of G-CSF after inflammatory stimulation, and that this might constitute part of the explanation for their defective upregulation of neutrophil production and function during infection.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3265-3272 ◽  
Author(s):  
JM Kerst ◽  
M de Haas ◽  
CE van der Schoot ◽  
IC Slaper-Cortenbach ◽  
M Kleijer ◽  
...  

Abstract We performed a detailed kinetic study on the in vivo effect of a single subcutaneous dose of granulocyte colony-stimulating factor (G-CSF; 300 micrograms) in four healthy individuals on the expression and function of neutrophil Fc gamma receptors (Fc gamma R). G-CSF did not induce Fc gamma RI (CD64) on circulating neutrophils. However, neutrophils newly formed in response to G-CSF were Fc gamma RI positive and were able to perform antibody-dependent cellular cytotoxicity in an Fc gamma RI- dependent way. Fc gamma RII (CD32) expression was not changed significantly. Fc gamma RIII (CD16, phosphatidylinositol-linked) expression, slightly increased immediately (30 minutes) postinjection, was found to be strongly decreased on the newly formed population. For comparison, we studied the expression of the PI-linked proteins leukocyte alkaline phosphatase (LAP) and CD14. Intracellular levels of LAP mirrored the biphasic expression pattern as membrane-bound Fc gamma RIII. In contrast, CD14 expression on neutrophils was initially constant, followed by high levels on the newly formed neutrophils. Soluble CD14 levels were found to be elevated transiently, whereas peak levels of soluble Fc gamma III were observed as late as 6 days postinjection. In conclusion, we have shown that G-CSF results in an immunophenotypically and functionally altered neutrophil population for an important part as a result of its effect on myeloid precursor cells.


2020 ◽  
Vol 105 ◽  
pp. 103586 ◽  
Author(s):  
Zhiguang Wu ◽  
Rakhi Harne ◽  
Cosmin Chintoan-Uta ◽  
Tuan-Jun Hu ◽  
Robert Wallace ◽  
...  

1994 ◽  
Vol 15 (5) ◽  
pp. 1017-1029 ◽  
Author(s):  
Fredika M. Robertson ◽  
Gautam N. Bijur ◽  
Andrew S. Oberyszyn ◽  
Arthur E. Pellegrini ◽  
Laszlo G. Boros ◽  
...  

Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2478-2484 ◽  
Author(s):  
KR Schibler ◽  
KW Liechty ◽  
WL White ◽  
RD Christensen

We postulated that defective generation of granulocyte colony- stimulating factor (G-CSF) by cells of newborn infants might underlie their deficiencies in upregulating neutrophil production and function during bacterial infection. To test this, we isolated monocytes from the blood of preterm neonates, term neonates, and adults and, after stimulation with various concentrations of interleukin-1 alpha (IL-1 alpha) or lipopolysaccharide (LPS), quantified G-CSF concentrations in cell supernatants and G-CSF mRNA in cell lysates. When stimulated with plateau concentrations of IL-1 alpha for 24 hours, G-CSF concentrations were higher in supernatants of adult cells (8,699 +/- 5,529 pg/10(6) monocytes) than in those from term infants (2,557 +/- 442 pg, P < .05) or from preterm infants (879 +/- 348 pg, P < .05 v adults). When stimulated with plateau concentrations of LPS, supernatants of monocytes from preterm neonates had less G-CSF than did those from term neonates or adults. G-CSF mRNA content was low in cells from preterm infants, higher in those from term infants, and highest in those from adults. On the basis of the in vitro studies, we speculated that serum G-CSF concentrations might be less elevated in neutropenic neonates than in neutropenic adults. Indeed, serum concentrations were relatively low in all nonneutropenic subjects; 92 +/- 34 pg/mL (mean +/- SEM) in 10 preterm neonates, 114 +/- 21 pg/mL in 16 term neonates, and 45 +/- 13 pg/mL in 11 healthy adults. Serum concentrations were not elevated in 7 neutropenic neonates (39 +/- 17 pg/mL) but were in 8 neutropenic adults (2101 +/- 942 pg/mL, P < .05 v healthy adults). Other studies suggested that the lower G-CSF production in neonates is not counterbalanced by a heightened sensitivity of G-CSF--responsive progenitors to G-CSF. Therefore, we speculate that newborn infants, particularly those delivered prematurely, generate comparatively low quantities of G-CSF after inflammatory stimulation, and that this might constitute part of the explanation for their defective upregulation of neutrophil production and function during infection.


Sign in / Sign up

Export Citation Format

Share Document