scholarly journals Visualizing Oscillations in Brain Slices With Genetically Encoded Voltage Indicators

2021 ◽  
Vol 15 ◽  
Author(s):  
Jun Kyu Rhee ◽  
Yayoi Iwamoto ◽  
Bradley J. Baker

Genetically encoded voltage indicators (GEVIs) expressed pan-neuronally were able to optically resolve bicuculline induced spontaneous oscillations in brain slices of the mouse motor cortex. Three GEVIs were used that differ in their timing of response to voltage transients as well as in their voltage ranges. The duration, number of cycles, and frequency of the recorded oscillations reflected the characteristics of each GEVI used. Multiple oscillations imaged in the same slice never originated at the same location, indicating the lack of a “hot spot” for induction of the voltage changes. Comparison of pan-neuronal, Ca2+/calmodulin-dependent protein kinase II α restricted, and parvalbumin restricted GEVI expression revealed distinct profiles for the excitatory and inhibitory cells in the spontaneous oscillations of the motor cortex. Resolving voltage fluctuations across space, time, and cell types with GEVIs represent a powerful approach to dissecting neuronal circuit activity.

Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 135-146 ◽  
Author(s):  
S.K. Mann ◽  
R.A. Firtel

We and others have previously shown that cAMP-dependent protein kinase (PKA) activity is essential for aggregation, induction of prespore gene expression and multicellular development in Dictyostelium. In this manuscript, we further examine this regulatory role. We have overexpressed the Dictyostelium PKA catalytic subunit (PKAcat) in specific cell types during the multicellular stages, using prestalk and prespore cell-type-specific promoters to make PKA activity constitutive in these cells (independent of cAMP concentration). To examine the effects on cell-type differentiation, we cotransformed the PKAcat-expressing vectors with reporter constructs expressing lacZ from four cell-type-specific promoters: ecmA (specific for prestalk A cells); ecmB (specific for prestalk B and anterior-like cells in the slug); ecmB delta 89 (specific for stalk cells); and SP60 (prespore-cell-specific). By staining for beta-galactosidase expression histologically at various stages of development in individual strains, we were able to dissect the morphological changes in these strains, examine the spatial localization of the individual cell types, and understand the possible roles of PKA during multicellular development. Expression of PKAcat from either the ecmA or ecmB prestalk promoters resulted in abnormal development that arrested shortly after the mound stage, producing a mound with a round apical protrusion at the time of tip formation. Prestalk A and prestalk B cells were localized in the central region and the apical mound in the terminal differentiated aggregate, while prespore cells showed an aberrant spatial localization. Consistent with a developmental arrest, these mounds did not form either mature spores or stalk cells and very few cells expressed a stalk-cell-specific marker. Expression of PKAcat from the prespore promoter resulted in abnormal morphogenesis and accelerated spore cell differentiation. When cells were plated on agar, a fruiting body was formed with a very large basal region, containing predominantly spores, and a small, abnormal sorocarp. Mature spore cells were first detected by 14 hours, with maximal levels reached by 18–20 hours, in contrast to 24–26 hours in wild-type strains. When cells were plated on filters, they produced an elongated tip from a large basal region, which continued to elongate as a tubular structure and produce a ‘slug-like’ structure at the end. The slug was composed predominantly of prestalk cells with a few prespore cells restricted to the junction between the ‘slug’ and tube. As the slug migrated, these prespore cells were found in the tube, while new prespore cells appeared at the slug/tube junction, suggesting a continual differentiation of new prespore cells at the slug's posterior.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 264 (3) ◽  
pp. G470-G477 ◽  
Author(s):  
J. G. Jin ◽  
K. S. Murthy ◽  
J. R. Grider ◽  
G. M. Makhlouf

The mechanism of action of vasoactive intestinal peptide (VIP) was examined in isolated gastric and taenia coli muscle cells and compared with that of nitric oxide (NO), sodium nitroprusside (SNP), and isoproterenol. In gastric muscle cells, VIP stimulated NO production, increased adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) levels, and induced relaxation in a concentration-dependent fashion. The NO synthase inhibitor NG-nitro-L-arginine abolished NO and cGMP production and partly inhibited relaxation. The soluble guanylate cyclase inhibitor LY 83583 abolished cGMP production and partly inhibited relaxation. (R)-p-adenosine 3',5'-cyclic phosphorothioate [(R)-p-cAMPS], a preferential inhibitor of cAMP-dependent protein kinase (cAK), and KT5823, a preferential inhibitor of cGMP-dependent protein kinase (cGK), partly inhibited relaxation separately and abolished relaxation in combination. The pattern implied that VIP induced relaxation by activation of cAK and by NO-mediated stimulation of cGMP and activation of cGK. In taenia coli muscle cells, VIP did not increase NO production or cGMP levels: relaxation was accompanied by an increase in cAMP and was partly inhibited by (R)-p-cAMPS and KT5823 and abolished by a combination of both inhibitors. Isoproterenol increased only cAMP levels in both cell types, which induced relaxation by activating cAK at low concentrations of agonist and both cAK and cGK at high concentrations in a pattern identical to that observed with VIP in taenia coli muscle cells. SNP and NO increased only cGMP levels in both cell types, which induced relaxation by activating cGK only. We conclude that cAK and cGK can be activated separately and mediate relaxation independently.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 83 (7) ◽  
pp. 541-556 ◽  
Author(s):  
Normand Leblanc ◽  
Jonathan Ledoux ◽  
Sohag Saleh ◽  
Amy Sanguinetti ◽  
Jeff Angermann ◽  
...  

Calcium-activated chloride channels (ClCa) are ligand-gated anion channels as they have been shown to be activated by a rise in intracellular Ca2+ concentration in various cell types including cardiac, skeletal and vascular smooth muscle cells, endothelial and epithelial cells, as well as neurons. Because ClCa channels are normally closed at resting, free intracellular Ca2+ concentration (~100 nmol/L) in most cell types, they have generally been considered excitatory in nature, providing a triggering mechanism during signal transduction for membrane excitability, osmotic balance, transepithelial chloride movements, or fluid secretion. Unfortunately, the genes responsible for encoding this class of ion channels is still unknown. This review centers primarily on recent findings on the properties of these channels in smooth muscle cells. The first section discusses the functional significance and biophysical and pharmacological properties of ClCa channels in smooth muscle cells, and ends with a description of 2 candidate gene families (i.e., CLCA and Bestrophin) that are postulated to encode for these channels in various cell types. The second section provides a summary of recent findings demonstrating the regulation of native ClCa channels in vascular smooth muscle cells by calmodulin-dependent protein kinase II and calcineurin and how their fine tuning by these enzymes may influence vascular tone. Key words: calcium-activated chloride channels, vascular smooth muscle cells, ion channels, calmodulin-dependent protein kinase II, calcineurin


2020 ◽  
Vol 60 (1) ◽  
pp. 155-174 ◽  
Author(s):  
Kwun Nok Mimi Man ◽  
Manuel F. Navedo ◽  
Mary C. Horne ◽  
Johannes W. Hell

Formation of signaling complexes is crucial for the orchestration of fast, efficient, and specific signal transduction. Pharmacological disruption of defined signaling complexes has the potential for specific intervention in selected regulatory pathways without affecting organism-wide disruption of parallel pathways. Signaling by epinephrine and norepinephrine through α and β adrenergic receptors acts on many signaling pathways in many cell types. Here, we initially provide an overview of the signaling complexes formed between the paradigmatic β2 adrenergic receptor and two of its most important targets, the L-type Ca2+ channel CaV1.2 and the AMPA-type glutamate receptor. Importantly, both complexes contain the trimeric Gs protein, adenylyl cyclase, and the cAMP-dependent protein kinase, PKA. We then discuss the functional implications of the formation of these complexes, how those complexes can be specifically disrupted, and how such disruption could be utilized in the pharmacological treatment of disease.


2004 ◽  
Vol 378 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Roger J. COLBRAN

Calcium/calmodulin-dependent protein kinase II (CaMKII) has diverse roles in virtually all cell types and it is regulated by a plethora of mechanisms. Local changes in Ca2+ concentration drive calmodulin binding and CaMKII activation. Activity is controlled further by autophosphorylation at multiple sites, which can generate an autonomously active form of the kinase (Thr286) or can block Ca2+/calmodulin binding (Thr305/306). The regulated actions of protein phosphatases at these sites also modulate downstream signalling from CaMKII. In addition, CaMKII targeting to specific subcellular microdomains appears to be necessary to account for the known signalling specificity, and targeting is regulated by Ca2+/calmodulin and autophosphorylation. The present review focuses on recent studies revealing the diversity of CaMKII interactions with proteins localized to neuronal dendrites. Interactions with various subunits of the NMDA (N-methyl-d-aspartate) subtype of glutamate receptor have attracted the most attention, but binding of CaMKII to cytoskeletal and several other regulatory proteins has also been reported. Recent reports describing the molecular basis of each interaction and their potential role in the normal regulation of synaptic transmission and in pathological situations are discussed. These studies have revealed fundamental regulatory mechanisms that are probably important for controlling CaMKII functions in many cell types.


2003 ◽  
Vol 31 (4) ◽  
pp. 824-827 ◽  
Author(s):  
G.J.O. Evans ◽  
A. Morgan

For over a decade, the enhancement of regulated exocytosis by cAMP-dependent protein kinase (PKA) has remained unexplained at the molecular level. The fact that this phenomenon has been observed in such a wide variety of secretory cell types, from pancreatic β-cells to neurons, suggests that it is an important and fundamental mechanism. Extensive analysis of the phosphorylation of exocytotic proteins has yielded few substrates of PKA in vitro, and fewer still have had physiological effects attributed to their phosphorylation. Here we review two proteins that do fulfil these criteria: the synaptic vesicle proteins cysteine string protein (CSP) and Snapin. Phosphorylation of these proteins by PKA produces changes in their respective protein–protein interactions, and has been attributed to modulation of the vesicle priming (Snapin) and vesicle fusion (CSP) stages of exocytosis. We also discuss how the function of CSP and Snapin phosphorylation might fit into an interesting aspect of the PKA-dependent enhancement of exocytosis: presynaptic plasticity in the brain.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Shuqiang Cui ◽  
Decai Qiao ◽  
Xiaoli Liu

Objective Objective:Cortical parvalbumin-expressing inhibitory neurons(PV) control the activity of excitatory neurons and regulate their spike output. The present experiment is to determine the role of PV neuron in the reglution of excitability of primary motor cortex (M1) during the exercise-induced fatigue and possible molecular mechanism. Methods Methods: Male Wistar rats randomly divided into control group(C),exhaustive exercise group(E) and repeated exhaustive exercise group(RE). The gradually increasing load treadmill exercise-induced fatigue model was employed in the Group E and RE.The in vivo multi-channel recording methods was used for recording the neuronal electrophysiological activities of primary motor cortex.To observe the neuron firing rate changes during the rest state,immediately after exhausted exercise and after repeated exhaustive exercise.We also detected the expression of PV positive neurons in the primary motor cortex by the immunofluorescence method. The western blot method was used to determine the expression of calmodulin-dependent protein kinase II (CaMKII)、phosphorylated calmodulin-dependent protein kinase II( pCaMKII) and extracellular signal regulated kinase (ERK) in the primary motor cortex. Results Results:The electrophysioligical results indicated that the neuron firing rate after repeated exhausted excise the neuron firing rate significantly decreased compared with the rest state (P<0.05),but have no significantly changes as compared with exhausted excise;The expression of PV positive neurons in the group of E and RE significantly increased compared with the group C(P<0.01);The western blot results indicated that the protein expression of ERK in group REsignificantly decreased compared with group C, the pCaMKII expression of group RE decreased,but have no statistical difference. Conclusions Conclusion: After exercise-indued fatigue ,the increase of PV positive neuron maybe one reason for the excitability changes in primary motor cortex.the alteraions in the electrical signal may be participate in the regluation of exercise-induced fatigue. pCaMKII and ERK signal pathway may invloved in the molecular mechanism of exercise-induced fatigue.


Sign in / Sign up

Export Citation Format

Share Document