scholarly journals Resting-State Functional Connectivity Associated With Extraversion and Agreeableness in Adolescence

2022 ◽  
Vol 15 ◽  
Author(s):  
Leehyun Yoon ◽  
Angelica F. Carranza ◽  
Johnna R. Swartz

Although adolescence is a period in which developmental changes occur in brain connectivity, personality formation, and peer interaction, few studies have examined the neural correlates of personality dimensions related to social behavior within adolescent samples. The current study aims to investigate whether adolescents’ brain functional connectivity is associated with extraversion and agreeableness, personality dimensions linked to peer acceptance, social network size, and friendship quality. Considering sex-variant neural maturation in adolescence, we also examined sex-specific associations between personality and functional connectivity. Using resting-state functional magnetic resonance imaging (fMRI) data from a community sample of 70 adolescents aged 12–15, we examined associations between self-reported extraversion and agreeableness and seed-to-whole brain connectivity with the amygdala as a seed region of interest. Then, using 415 brain regions that correspond to 8 major brain networks and subcortex, we explored neural connectivity within brain networks and across the whole-brain. We conducted group-level multiple regression analyses with the regressors of extraversion, agreeableness, and their interactions with sex. Results demonstrated that amygdala connectivity with the postcentral gyrus, middle temporal gyrus, and the temporal pole is positively associated with extraversion in girls and negatively associated with extraversion in boys. Agreeableness was positively associated with amygdala connectivity with the middle occipital cortex and superior parietal cortex, in the same direction for boys and girls. Results of the whole-brain connectivity analysis revealed that the connectivity of the postcentral gyrus, located in the dorsal attention network, with regions in default mode network (DMN), salience/ventral attention network, and control network (CON) was associated with extraversion, with most connections showing positive associations in girls and negative associations in boys. For agreeableness, results of the within-network connectivity analysis showed that connections within the limbic network were positively associated with agreeableness in boys while negatively associated with or not associated with agreeableness in girls. Results suggest that intrinsic functional connectivity may contribute to adolescents’ individual differences in extraversion and agreeableness and highlights sex-specific neural connectivity patterns associated with the two personality dimensions. This study deepens our understanding of the neurobiological correlates of adolescent personality that may lead to different developmental trajectories of social experience.

2016 ◽  
Author(s):  
Murat Demirtaş ◽  
Matthieu Gilson ◽  
John D. Murray ◽  
Dina Popovic ◽  
Eduard Vieta ◽  
...  

AbstractResting-state functional magnetic resonance imaging and diffusion weight imaging became a conventional tool to study brain connectivity in healthy and diseased individuals. However, both techniques provide indirect measures of brain connectivity leading to controversies on their interpretation. Among these controversies, interpretation of anti-correlated functional connections and global average signal is a major challenge for the field. In this paper, we used dynamic functional connectivity to calculate the probability of anti-correlations between brain regions. The brain regions forming task-positive and task-negative networks showed high anti-correlation probabilities. The fluctuations in anti-correlation probabilities were significantly correlated with those in global average signal and functional connectivity. We investigated the mechanisms behind these fluctuations using whole-brain computational modeling approach. We found that the underlying effective connectivity and intrinsic noise reflect the static spatiotemporal patterns, whereas the hemodynamic response function is the key factor defining the fluctuations in functional connectivity and anti-correlations. Furthermore, we illustrated the clinical implications of these findings on a group of bipolar disorder patients suffering a depressive relapse (BPD).


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e104947 ◽  
Author(s):  
Tamás Spisák ◽  
András Jakab ◽  
Sándor A. Kis ◽  
Gábor Opposits ◽  
Csaba Aranyi ◽  
...  

Author(s):  
Zhen-Zhen Ma ◽  
Jia-Jia Wu ◽  
Xu-Yun Hua ◽  
Mou-Xiong Zheng ◽  
Xiang-Xin Xing ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federica Contò ◽  
Grace Edwards ◽  
Sarah Tyler ◽  
Danielle Parrott ◽  
Emily Grossman ◽  
...  

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


2020 ◽  
Author(s):  
Giovanni Rabuffo ◽  
Jan Fousek ◽  
Christophe Bernard ◽  
Viktor Jirsa

AbstractAt rest, mammalian brains display a rich complex spatiotemporal behavior, which is reminiscent of healthy brain function and has provided nuanced understandings of several major neurological conditions. Despite the increasingly detailed phenomenological documentation of the brain’s resting state, its principle underlying causes remain unknown. To establish causality, we link structurally defined features of a brain network model to neural activation patterns and their variability. For the mouse, we use a detailed connectome-based model and simulate the resting state dynamics for neural sources and whole brain imaging signals (Blood-Oxygen-Level-Dependent (BOLD), Electroencephalography (EEG)). Under conditions of near-criticality, characteristic neuronal cascades form spontaneously and propagate through the network. The largest neuronal cascades produce short-lived but robust co-fluctuations at pairs of regions across the brain. During these co-activation episodes, long-lasting functional networks emerge giving rise to epochs of stable resting state networks correlated in time. Sets of neural cascades are typical for a resting state network, but different across. We experimentally confirm the existence and stability of functional connectivity epochs comprising BOLD co-activation bursts in mice (N=19). We further demonstrate the leading role of the neuronal cascades in a simultaneous EEG/fMRI data set in humans (N=15), explaining a large part of the variability of functional connectivity dynamics. We conclude that short-lived neuronal cascades are a major robust dynamic component contributing to the organization of the slowly evolving spontaneous fluctuations in brain dynamics at rest.


2021 ◽  
Author(s):  
Andrew Lynn ◽  
Eric D. Wilkey ◽  
Gavin Price

The human brain comprises multiple canonical networks, several of which are distributed across frontal, parietal, and temporooccipital regions. Studies report both positive and negative correlations between children’s math skills and the strength of functional connectivity among these regions during math-related tasks and at rest. Yet, it is unclear how the relation between children’s math skills and functional connectivity map onto patterns of distributed whole-brain connectivity, canonical network connectivity, and whether these relations are consistent across different task-states. We used connectome-based predictive modeling to test whether functional connectivity during number comparison and at rest predicts children’s math skills (N=31, Mage=9.21years) using distributed whole-brain connections versus connections among canonical networks. We found that weaker connectivity distributed across the whole brain and weaker connectivity between key math-related brain regions in specific canonical networks predicts better math skills in childhood. The specific connections predicting math skills, and whether they were distributed or mapped onto canonical networks, varied between tasks, suggesting that state-dependent rather than trait-level functional network architectures support children’s math skills. Furthermore, the current predictive modeling approach moves beyond brain-behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.


Sign in / Sign up

Export Citation Format

Share Document