scholarly journals Decreased Phase–Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats

2021 ◽  
Vol 15 ◽  
Author(s):  
Zihe Wang ◽  
Qingying Cao ◽  
Wenwen Bai ◽  
Xuyuan Zheng ◽  
Tiaotiao Liu

Depression is a common neuropsychiatric illness observed worldwide, and reduced interest in exploration is one of its symptoms. The control of dysregulated medial prefrontal cortex (mPFC) over the basolateral amygdala (BLA) is related to depression. However, the oscillation interaction in the mPFC-BLA circuit has remained elusive. Therefore, this study used phase–amplitude coupling (PAC), which provides complicated forms of information transmission by the phase of low-frequency rhythm, modulating the amplitude of high-frequency rhythm, and has a potential application for the treatment of neurological disease. The chronic unpredictable mild stress (CUMS) was used to prepare the rat models of depression. Moreover, multichannel in vivo recording was applied to obtain the local field potentials (LFPs) of the mPFC, the BLA in rats in control, and CUMS groups, while they explored the open field. The results showed prominent coupling between the phase of theta oscillation (4–12 Hz) in the mPFC and the amplitude of high-gamma oscillation (70–120 Hz) in the BLA. Compared to the control group, this theta–gamma PAC was significantly decreased in the CUMS group, which was accompanied by the diminished exploratory behaviour. The results indicate that the coupling between the phase of theta in the mPFC and the amplitude of gamma in the BLA is involved in exploratory behaviour, and this decreased coupling may inhibit exploratory behaviour of rats exposed to CUMS.

Author(s):  
Xiangyu Liu ◽  
Xiong Xue ◽  
Junsheng Tian ◽  
Xuemei Qin ◽  
Shi Zhou ◽  
...  

The objectives of this study were to compare the antidepressant effects between endurance and resistance exercise for optimizing interventions and examine the metabolomic changes in different types of skeletal muscles in response to the exercise, using a rat model of chronic unpredictable mild stress (CUMS)-induced depression. There were 32 male Sprague-Dawley rats randomly divided into a control group (C) and 3 experimental groups: CUMS control (D), endurance exercise (E), and resistance exercise (R). Group E underwent 30 min treadmill running, and group R performed 8 rounds of ladder climbing, 5 sessions per week for 4 weeks. Body weight, sucrose preference, and open field tests were performed pre and post the intervention period for changes in depressant symptoms, and the gastrocnemius and soleus muscles were sampled after the intervention for metabolomic analysis using the 1H-NMR technique. The results showed that both types of exercise effectively improved the depression-like symptoms, and the endurance exercise appeared to have a better effect. The levels of 10 metabolites from the gastrocnemius and 13 metabolites from the soleus of group D were found to be significantly different from that of group C, and both types of exercise had a callback effect on these metabolites, indicating that a number of metabolic pathways were involved in the depression and responded to the exercise interventions.


2007 ◽  
Vol 51 (9) ◽  
pp. 3199-3204 ◽  
Author(s):  
Xun-Zi Cai ◽  
Shi-Gui Yan ◽  
Hao-Bo Wu ◽  
Rong-Xin He ◽  
Xue-Song Dai ◽  
...  

ABSTRACT This study sought to investigate the effect of delayed pulsed-wave ultrasound with low frequency on drug release from and the antimicrobial efficacy of vancomycin-loaded acrylic bone cement in vivo and the possible mechanism of this effect. After the implantation of cement and the inoculation of Staphylococcus aureus into the bilateral hips of rabbits, ultrasound (average intensity, 300 mW/cm2; frequency, 46.5 kHz; on/off ratio, 20 min/10 min) was applied to animals in the normal ultrasound group (UG0-12) from 0 through 12 h after surgery and to those in the delayed-ultrasound group (UG12-24) from 12 through 24 h after surgery. The control group (CG) was not exposed to ultrasound. Based on vancomycin concentrations in left hip cavities at projected time intervals, the amount of time during which the local drug concentration exceeded the MIC (T >MIC) in UG12-24 was significantly prolonged compared with that in either CG or UG0-12, and the ratios between the areas under the concentration-time curves over 24 h and the MIC for UG0-12 and UG12-24 were both increased compared with that for CG. The greatest reductions in bacterial densities in both right hip aspirates and right femoral tissues at 48 h were achieved with UG12-24. Local hemorrhage in rabbits of UG0-12 during the 12-h insonation was more severe than that in rabbits of UG12-24. Of four variables, the T >MIC and the bioacoustic effect were both identified as parameters predictive of the enhancement of the antimicrobial efficacy of cement by ultrasound. Sustained concentrations above the MIC replaced early high maximum concentrations and long-term subtherapeutic release of the drug, provided that ultrasound was not applied until local hemorrhage was relieved. The enhancement of the antimicrobial efficacy of cement by ultrasound may be attributed to the prolonged T >MIC and the bioacoustic effect caused by ultrasound.


2019 ◽  
Author(s):  
Wataru Ito ◽  
Brendon Fusco ◽  
Alexei Morozov

AbstractNatural brain adaptations often involve changes in synaptic strength. The artificial manipulations can help investigate the role of synaptic strength in a specific brain circuit not only in various physiological phenomena like correlated neuronal firing and oscillations but also in behaviors. High and low-frequency stimulation at presynaptic sites has been used widely to induce long-term potentiation (LTP) and depression (LTD), respectively. This approach is effective in many brain areas, but not in the basolateral amygdala (BLA), because the robust local GABAergic tone inside the BLA restricts synaptic plasticity. Here, we identified the subclass of GABAergic neurons that gate LTP in the BLA afferents from the dorsomedial prefrontal cortex (dmPFC). Chemogenetic suppression of somatostatin-positive interneurons (Sst-INs) enabled the ex vivo LTP by high-frequency stimulation of the afferent, but the suppression of parvalbumin-positive interneurons (PV-INs) did not. Moreover, optogenetic suppression of Sst-INs with Arch also enabled LTP of the dmPFC-BLA synapses both ex vivo and in vivo. These findings reveal that Sst-INs but not PV-INs gate LTP in the dmPFC-BLA pathway and provide a method for artificial synaptic facilitation in BLA.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Hao Yu ◽  
Lijuan Hou ◽  
Jing Ma ◽  
Zhifeng Wang ◽  
Gang Zhao ◽  
...  

Objective The motor cortex (MC) stimulation-induced unitary responses of globus pallidus external segment (GPe) neurons in control and exercise induced-fatigue rats were recorded in vivo to examine the role of cortical-striatum-external globus pallidal pathway in the mechanism of central fatigue. Methods 32 Clean healthy male Wistar rats (260~300g), were randomly divided into 4 groups: control group (Control), 1-day fatigue group (1FG), 3-day fatigue group (3FG) and 7-day fatigue group (7FG). Rats were subjected to a 5-day adaptive treadmill training. Modified Bedford treadmill exercise with progressively increasing load was used to creat the exercise fatigue model. (3 levels:8.2 m/min, 15 min; 15m/min, 15 min; 20 m/min, lasting till exhaustion) The spontaneous unit activity and responses to MC stimulation of GPe neurons were recorded by the electrophysiological technique of extracellular recording of glass microelectrodes. Results The results showed that the firing frequency of high-frequency firing with pause (HFP) and low frequency firing with burst (LFB) in the GPe of 1FG was comparable with that of control group (P>0.05). However in 3FG and 7FG , the percentage of HFP neuron was significantly decreased (P<0.05), while the proportion of LFB was significantly increased (P<0.05), and the average firing rate of LFB was higher and inter spike intervals (ISI) was significantly lower than that of the control group. With 200μA electrical stimulation, the explosive discharge of GPe neurons was attenuated after fatigue in rats. The response of GPe neurons to variable frequency stimulation in exhausted model groups was stronger than that of the control group.MC-stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GPe neurons. The population of neurons showing a short inhibition slightly increased in 3FG and 7FG. Conclusions 1. The results confirmed that GPe is an important nucleus of basal ganglia involved in the regulation of exercise-induced fatigue by the change of spontaneous activity. Electrical stimulation on the cortex can alter response patterns of GPe neurons in exercise-induced fatigue rats, the results confirmed that the Ctx-Str-GPe neural pathway is involved in the regulation of exercise fatigue, and the indirect pathway is over-activated.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 29 ◽  
Author(s):  
Ahmad Khan ◽  
Sune Jespersen ◽  
Ove Wiborg ◽  
Christopher Kroenke ◽  
Brian Hansen

This article presents longitudinal 1H-MR Spectroscopy (1H-MRS) data from ventral hippocampus and in vivo diffusion MRI (dMRI) data of the brain from control and anhedonic rats. The 1H-MRS and dMRI data were acquired using a 9.4 T preclinical imaging system. Before MRI experiments, animals were exposed to unpredictable chronic mild stress exposure for eight weeks and on the basis of a sucrose consumption test were identified as anhedonic and resilient. An age-matched group of animals, unexposed to the unpredictable chronic mild stress paradigm was considered as control. Data was acquired at the age of 18, 20 and 25 weeks in the anhedonic group and at the age of 18 and 22 weeks in the control group. This multimodal MRI data provides metabolic information of ventral hippocampus and dMRI based microstructural parameters of the brain.


Author(s):  
Jia Luo ◽  
Changfa Tang ◽  
Xiaobin Chen ◽  
Zhanbing Ren ◽  
Honglin Qu ◽  
...  

This study was to study the impact of aerobic exercises on the chronic unpredictable mild stress (CUMS) in mice, and to discuss the possible mechanism from the skeletal muscle AMPK/PGC-1α energy metabolism signaling pathway. The healthy male mice were randomly divided into Control Group (CG), Model Group (MG), and Model Exercise Group (ME).Twelve stress methods were adopted for four weeks (28 days) to establish the depression model. ME was subject to aerobic training plan after the model was established. The weight of the mice was recorded weekly. After the experimental intervention, the three groups of mice were subjected to behavioral assessment tests. Western blotting, RT-PCR, and ELISA were performed to test AMPK, p-AMPK, PGC-1α, and ATP in skeletal muscle. There were no significant difference in body weight between the three groups. CUMS leaded to significant decline in behavioral scores. and the p-AMPK and PGC-1α decreased significantly. But boosted ATP content. Aerobic exercise enhanced the expressions of p-AMPK and PGC-1α, increased the ratio of p-AMPK/AMPK, boosted ATP content. And improved behavioral scores significantly. Chronic stress-induced depression-like behavior was improved significantly by Aerobic exercise. The mechanism of aerobic exercise for improving depressive symptoms in mice with chronic stress depression may be related to influence AMPK/PGC-1α pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhanqiang Ma ◽  
Weiwei Ji ◽  
Rong Qu ◽  
Mingyan Wang ◽  
Wen Yang ◽  
...  

The aim of this study was to establish an experimental model for metabonomic profiles of the rat’s brain and then to investigate the antidepressant effect of Banxia Houpu decoction (BHD) and its possible mechanisms. Behavioral research and metabonomics method based on UPLC-MS were used to assess the efficacy of different fractions of BHD on chronic unpredictable mild stress (CUMS) model of depression. There was a significant difference between the BHD group and the model group. Eight endogenous metabolites, which are contributing to the separation of the model group and control group, were detected, while BHD group regulated the perturbed metabolites showing that there is a tendency of recovery compared to control group. Therefore, we think that those potential metabolite biomarkers have some relationship with BHD’s antidepression effect. This work appraised the antidepressant effect of Banxia Houpu decoction as well as revealing a metabonomics method, a valuable parameter in the TCM research.


2020 ◽  
Vol 14 ◽  
Author(s):  
Chengxi Qi ◽  
Zihe Wang ◽  
Wenwen Bai ◽  
Tiaotiao Liu ◽  
Xuyuan Zheng

Depression is a mental and neurological disease that reduces the desire for exploration. Dysregulation of the information transmission between medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) is associated with depression. However, which direction of information transmission (mPFC-BLA or BLA-mPFC) related to the decline of exploratory interests in depression is unclear. Therefore, it is important to determine what specific changes occur in mPFC and BLA information transmission in depressed rats during exploratory behavior. In the present study, local field potentials (LFPs) were recorded via multi-electrodes implanted in the mPFC and BLA for the control and depression groups of rats when they were exploring in an open field. The theta band was determined to be the characteristic band of exploratory behavior. The direct transfer function (DTF) was used to calculate the mPFC and BLA bidirectional information flow (IF) to measure information transmission. Compared with the control group, the theta IF of mPFC-BLA in the depression group was significantly reduced, and there was no significant difference in theta IF of BLA-mPFC between the two groups. Our results indicated that the reduction of mPFC-BLA information transmission can inhibit the exploratory behavior of depressed rats.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jessica K Nadalin ◽  
Louis-Emmanuel Martinet ◽  
Ethan B Blackwood ◽  
Meng-Chen Lo ◽  
Alik S Widge ◽  
...  

Cross frequency coupling (CFC) is emerging as a fundamental feature of brain activity, correlated with brain function and dysfunction. Many different types of CFC have been identified through application of numerous data analysis methods, each developed to characterize a specific CFC type. Choosing an inappropriate method weakens statistical power and introduces opportunities for confounding effects. To address this, we propose a statistical modeling framework to estimate high frequency amplitude as a function of both the low frequency amplitude and low frequency phase; the result is a measure of phase-amplitude coupling that accounts for changes in the low frequency amplitude. We show in simulations that the proposed method successfully detects CFC between the low frequency phase or amplitude and the high frequency amplitude, and outperforms an existing method in biologically-motivated examples. Applying the method to in vivo data, we illustrate examples of CFC during a seizure and in response to electrical stimuli.


2018 ◽  
Author(s):  
Juan L.P. Soto ◽  
Felipe V.D. Prado ◽  
Etienne Combrisson ◽  
Karim Jerbi

AbstractMany functional connectivity studies based on electrophysiological measurements, such as electro- and magnetoencephalography (EEG/MEG), start their investigations by extracting a narrowband representation of brain activity time series, and then computing their envelope amplitudes and instantaneous phases, which serve as inputs to subsequent data processing. The two most popular approaches for obtaining these narrowband amplitudes and phases are: bandpass filtering followed by Hilbert transform (we call this the Hilbert approach); and convolution with wavelet kernels (the wavelet approach). In this work, we investigate how these two approaches perform in detecting the phenomenon of phase-amplitude coupling (PAC), whereby the amplitude of a high-frequency signal is driven by the phase of a low-frequency signal. The comparison of both approaches is carried out by means of simulated brain activity, from which we run receiver operating characteristic (ROC) analyses, and of experimental MEG data from a visuomotor coordination study. The ROC analyses show that both approaches have comparable accuracy, except in the presence of interfering signals with frequencies near the high-frequency band. As for the visuomotor data, the most noticeable impact of the choice of approach was observed when evaluating task-based changes in PAC between the delta (2-5 Hz) and the high-gamma (60-90 Hz) frequency bands, as we were able to identify widespread brain areas with statistically significant effects only with the Hilbert approach. These results provide preliminary evidence of the advantages of the Hilbert approach over the wavelet approach, at least in the context of PAC estimates.


Sign in / Sign up

Export Citation Format

Share Document