scholarly journals Role of Exosomes in Brain Diseases

2021 ◽  
Vol 15 ◽  
Author(s):  
Nan Zhang ◽  
Fengling He ◽  
Ting Li ◽  
Jinzhi Chen ◽  
Liping Jiang ◽  
...  

Exosomes are a subset of extracellular vesicles that act as messengers to facilitate communication between cells. Non-coding RNAs, proteins, lipids, and microRNAs are delivered by the exosomes to target molecules (such as proteins, mRNAs, or DNA) of host cells, thereby playing a key role in the maintenance of normal brain function. However, exosomes are also involved in the occurrence, prognosis, and clinical treatment of brain diseases, such as Alzheimer's disease, Parkinson's disease, stroke, and traumatic brain injury. In this review, we have summarized novel findings that elucidate the role of exosomes in the occurrence, prognosis, and treatment of brain diseases.

Physiology ◽  
2018 ◽  
Vol 33 (2) ◽  
pp. 99-112 ◽  
Author(s):  
Evelyn K. Shih ◽  
Michael B. Robinson

Until recently, astrocyte processes were thought to be too small to contain mitochondria. However, it is now clear that mitochondria are found throughout fine astrocyte processes and are mobile with neuronal activity resulting in positioning near synapses. In this review, we discuss evidence that astrocytic mitochondria confer selective resiliency to astrocytes during ischemic insults and the functional significance of these mitochondria for normal brain function.


Author(s):  
Seana Molloy ◽  
Gemma Batchelor ◽  
Peter Mallett ◽  
Andrew Thompson ◽  
Thomas Bourke ◽  
...  

Paediatric traumatic brain injury (TBI) is a non-degenerative, acquired brain insult. Following a blow or penetrating trauma to the head, normal brain function is disrupted. If it occurs during the early stages of development, deficits may not immediately become apparent but unfold and evolve over time. We address the difficulties that arise when treating a child with severe TBI.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 586 ◽  
Author(s):  
Hamilton Roschel ◽  
Bruno Gualano ◽  
Sergej M. Ostojic ◽  
Eric S. Rawson

There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.


2021 ◽  
Author(s):  
Dyah Kanya Wati

Traumatic brain injury (TBI) in children occurs as a result of a sudden bump, roll, or jerk to the head or a penetrating injury to the head that interferes the normal brain function. Traumatic brain injury (TBI) is the leading cause of death and disability in children. More than half a million children present annually to the emergency department for TBI-related visits, and resulting in the death of >7,000 children annually in the United States, with highest incident rates seen in children aged 0–4 years and adolescents aged 15 to 19 years. In Indonesia, from Riskesdas data in 2013 shows the incidence of head trauma in children is about 0.5% of the population from other injury rates. Pediatric TBI is associated with an array of negative outcomes, including impaired cognitive and academic abilities, social impairments, and behavioral problems. The scalp is highly vascularized and a potential cause of lethal blood loss. Even a small loss of blood volume can lead to hemorrhagic shock in a newborn, infant, and toddler, which may occur without apparent external bleeding.


2020 ◽  
Vol 10 (3) ◽  
pp. 168 ◽  
Author(s):  
Francisco Pestana ◽  
Gabriela Edwards-Faret ◽  
T. Grant Belgard ◽  
Araks Martirosyan ◽  
Matthew G. Holt

Astrocytes are ubiquitous in the central nervous system (CNS). These cells possess thousands of individual processes, which extend out into the neuropil, interacting with neurons, other glia and blood vessels. Paralleling the wide diversity of their interactions, astrocytes have been reported to play key roles in supporting CNS structure, metabolism, blood-brain-barrier formation and control of vascular blood flow, axon guidance, synapse formation and modulation of synaptic transmission. Traditionally, astrocytes have been studied as a homogenous group of cells. However, recent studies have uncovered a surprising degree of heterogeneity in their development and function, in both the healthy and diseased brain. A better understanding of astrocyte heterogeneity is urgently needed to understand normal brain function, as well as the role of astrocytes in response to injury and disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nelly Redolfi ◽  
Claudia Lodovichi

Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.


2017 ◽  
Vol 312 (3) ◽  
pp. C222-C232 ◽  
Author(s):  
Namrata Madan ◽  
Yunhui Xu ◽  
Qiming Duan ◽  
Moumita Banerjee ◽  
Isabel Larre ◽  
...  

The Na/K-ATPase α1 polypeptide supports both ion-pumping and signaling functions. The Na/K-ATPase α3 polypeptide differs from α1 in both its primary structure and its tissue distribution. The expression of α3 seems particularly important in neurons, and recent clinical evidence supports a unique role of this isoform in normal brain function. The nature of this specific role of α3 has remained elusive, because the ubiquitous presence of α1 has hindered efforts to characterize α3-specific functions in mammalian cell systems. Using Na/K-ATPase α1 knockdown pig kidney cells (PY-17), we generated the first stable mammalian cell line expressing a ouabain-resistant form of rat Na/K-ATPase α3 in the absence of endogenous pig α1 detectable by Western blotting. In these cells, Na/K-ATPase α3 formed a functional ion-pumping enzyme and rescued the expression of Na/K-ATPase β1 and caveolin-1 to levels comparable with those observed in PY-17 cells rescued with a rat Na/K-ATPase α1 (AAC-19). The α3-containing enzymes had lower Na+affinity and lower ouabain-sensitive transport activity than their α1-containing counterparts under basal conditions, but showed a greater capacity to be activated when intracellular Na+was increased. In contrast to Na/K-ATPase α1, α3 could not regulate Src. Upon exposure to ouabain, Src activation did not occur, yet ERK was activated through Src-independent pathways involving PI3K and PKC. Hence, α3 expression confers signaling and pumping properties that are clearly distinct from that of cells expressing Na/K-ATPase α1.


Sign in / Sign up

Export Citation Format

Share Document