scholarly journals How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective

2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina Azzollini ◽  
Stefania Dalise ◽  
Carmelo Chisari

Long-term disability caused by stroke is largely due to an impairment of motor function. The functional consequences after stroke are caused by central nervous system adaptations and modifications, but also by the peripheral skeletal muscle changes. The nervous and muscular systems work together and are strictly dependent in their structure and function, through afferent and efferent communication pathways with a reciprocal “modulation.” Knowing how altered interaction between these two important systems can modify the intrinsic properties of muscle tissue is essential in finding the best rehabilitative therapeutic approach. Traditionally, the rehabilitation effort has been oriented toward the treatment of the central nervous system damage with a central approach, overlooking the muscle tissue. However, to ensure greater effectiveness of treatments, it should not be forgotten that muscle can also be a target in the rehabilitation process. The purpose of this review is to summarize the current knowledge about the skeletal muscle changes, directly or indirectly induced by stroke, focusing on the changes induced by the treatments most applied in stroke rehabilitation. The results of this review highlight changes in several muscular features, suggesting specific treatments based on biological knowledge; on the other hand, in standard rehabilitative practice, a realist muscle function evaluation is rarely carried out. We provide some recommendations to improve a comprehensive muscle investigation, a specific rehabilitation approach, and to draw research protocol to solve the remaining conflicting data. Even if a complete multilevel muscular evaluation requires a great effort by a multidisciplinary team to optimize motor recovery after stroke.

Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1047
Author(s):  
Stefania Dalise ◽  
Valentina Azzollini ◽  
Carmelo Chisari

It is widely known that nervous and muscular systems work together and that they are strictly dependent in their structure and functions. Consequently, muscles undergo macro and microscopic changes with subsequent alterations after a central nervous system (CNS) disease. Despite this, only a few researchers have addressed the problem of skeletal muscle abnormalities following CNS diseases. The purpose of this review is to summarize the current knowledge on the potential mechanisms responsible for changes in skeletal muscle of patients suffering from some of the most common CSN disorders (Stroke, Multiple Sclerosis, Parkinson’s disease). With this purpose, we analyzed the studies published in the last decade. The published studies show an extreme heterogeneity of the assessment modality and examined population. Furthermore, it is evident that thanks to different evaluation methodologies, it is now possible to implement knowledge on muscle morphology, for a long time limited by the requirement of muscle biopsies. This could be the first step to amplify studies aimed to analyze muscle characteristics in CNS disease and developing rehabilitation protocols to prevent and treat the muscle, often neglected in CNS disease.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 846
Author(s):  
Gitishree Das ◽  
Han-Seung Shin ◽  
Rosa Tundis ◽  
Sandra Gonçalves ◽  
Ourlad Alzeus G. Tantengco ◽  
...  

Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.


Author(s):  
Foluwasomi A. Oyefeso ◽  
Alysson R. Muotri ◽  
Christopher G. Wilson ◽  
Michael J. Pecaut

PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e16632 ◽  
Author(s):  
François Genêt ◽  
Claire Jourdan ◽  
Alexis Schnitzler ◽  
Christine Lautridou ◽  
Didier Guillemot ◽  
...  

1990 ◽  
Vol 258 (5) ◽  
pp. E894-E897 ◽  
Author(s):  
G. C. Tombaugh ◽  
R. M. Sapolsky

Glucocorticoids enhance the neurotoxic potential of several insults to the rat hippocampus that involve overactivation of glutamatergic synapses. These hormones also stimulate the synthesis of glutamine synthetase (GS) in peripheral tissue. Because this enzyme helps regulate glutamate metabolism in the central nervous system, glucocorticoid induction of GS in the brain may underlie the observed synergy. We have measured GS activity in the hippocampus and skeletal muscle (plantaris) of adult rats after bilateral adrenalectomy (ADX), corticosterone (Cort) replacement, or stress. No significant changes in GS were observed in hippocampal tissue, whereas muscle GS was significantly elevated after Cort treatment or stress and was reduced after ADX. These results suggest that Cort-induced shifts in GS activity probably do not explain Cort neurotoxicity, although the stress-induced rise in muscle GS may be relevant to certain types of myopathy.


Author(s):  
Sangsoo Park, Hojun Yeom

A biosignal is used as a control signal for electrical stimulation to restore weakened muscle function due to damage to the central nervous system. In patients with central nervous system damage, sufficient muscle contraction does not occur spontaneously. In this case, applying electrical stimulation can cause normal muscle contraction. However, it is necessary to remove the electrical stimulation artifact caused by the electrical stimulation. This paper describes a system design that removes electrical stimulation artifact in real time using a Cortex-M4-based STM32F processor. The STM32F is a very advantageous MCU for such DSPs, especially because it has a built-in floating point operator. Using STM32F's various high-performance peripherals (12-bit parallel ADC and 12-bit DAC, UART, Timer), an optimized embedded system was implemented.In this paper, the simulated and real-time results were compared and evaluated with the designed fir filter. In addition, the performance of the filter was evaluated through frequency analysis. As a result, it was verified that a high-performance 32-bit STM32F with floating point calculator and various peripherals is suitable for real-time signal processing


Author(s):  
O.P. Lysenko ◽  
V.V. Vlasenko ◽  
H.K. Palii ◽  
I.H. Vlasenko ◽  
O.A. Nazarchuk

Mycobacterium tuberculosis is endowed with resistance to adverse factors and rapidly forms drug resistance. The aim is to study of the connection of tuberculosis infection and the development of brain damage with signs of spongymorphic changes. There were investigated canned 10% formalin fragments of the brain of 2 goats with signs of central nervous system damage by histological, microbiological methods. For microbiological examination, 3–5 years brain samples after were sowed on the MycСel DW nutrient medium with a growth stimulator. The molecular genetic study was performed using a polymerase chain reaction on a Molecular Imager GelDoc TM XR + (BioRad) device. The polypeptide profile was studied electrophoretically. In the goats, who died with symptoms of central nervous system damage, spongiform changes were detected in the brain. In the brain samples, DNA and mycobacterium tuberculosis with a defective cell wall have been detected, accumulation of mycobacterial antigens has been observed in the cells of the brain and in the intercellular space. Despite the fact that brain samples were in 10% formalin for 1 month, 3 years and 5 years, in all cases mycobacterium tuberculosis with a defective cell wall was isolated. Their viability was comparable to the infectiousness of prions. The isolation of mycobacterium tuberculosis with a defective cell wall from the brain did not differ in morphology and polypeptide composition from isolates from tuberculin, FLK-BLV, lymph nodes of cows, patients with tuberculosis. This indicates a high probability that mycobacterial infection, depending on the infectious dose, the characteristics of the strain and host genome, as well as the state of the immune system, can cause oncogenic action, cause active tuberculosis, brain damage, and the cardiovascular system.


Sign in / Sign up

Export Citation Format

Share Document