scholarly journals Neurorights in History: A Contemporary Review of José M. R. Delgado’s “Physical Control of the Mind” (1969) and Elliot S. Valenstein’s “Brain Control” (1973)

2021 ◽  
Vol 15 ◽  
Author(s):  
Stephan Schleim

Scholars from various disciplines discuss the ethical, legal, and social implications of neurotechnology. Some have proposed four concrete “neurorights”. This review presents the research of two pioneers in brain stimulation from the 1950s to 1970s, José M. R. Delgado and Elliot S. Valenstein, who also reflected upon the ethical, legal, and social aspects of their and other scientists’ related research. Delgado even formulated the vision “toward a psychocivilized society” where brain stimulation is used to control, in particular, citizens’ aggressive and violent behavior. Valenstein, by contrast, believed that the brain is not organized in such a way to allow the control or even removal of only negative processes without at the same time diminishing desirable ones. The paper also describes how animal and human experimentation on brain stimulation was carried out in that time period. It concludes with a contemporary perspective on the relevance of neurotechnology for neuroethics, neurolaw, and neurorights, including two recent examples for brain-computer interfaces.

2019 ◽  
Author(s):  
Jason Shepard ◽  
Joshua May

We provide empirical evidence that people who believe in dualism are more likely to be uncomfortable with Deep Brain Stimulation (DBS) and to view it as threatening to their identity, humanity, or self. It is (neurocentric) materialists—who think the mind just is the brain—that are less inclined to fear DBS or to see it as threatening. We suggest various possible reasons for this connection. The inspiration for this brief report is a target article that addresses this issue from a theoretical perspective.


2004 ◽  
Vol 49 (6) ◽  
pp. 713-716
Author(s):  
Ellen S. Berscheid
Keyword(s):  
The Mind ◽  

PsycCRITIQUES ◽  
2016 ◽  
Vol 61 (32) ◽  
Author(s):  
Christopher A. Was
Keyword(s):  
The Mind ◽  

2019 ◽  
Author(s):  
vernon thornton

A description of of the mind and its relationship to the brain, set in an evolutionary context. Introduction of a correct version of 'language-of-thought' called 'thinkish'.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


Author(s):  
Marcello Massimini ◽  
Giulio Tononi

This chapter uses thought experiments and practical examples to introduce, in a very accessible way, the hard problem of consciousness. Soon, machines may behave like us to pass the Turing test and scientists may succeed in copying and simulating the inner workings of the brain. Will all this take us any closer to solving the mysteries of consciousness? The reader is taken to meet different kind of zombies, the philosophical, the digital, and the inner ones, to understand why many, scientists and philosophers alike, doubt that the mind–body problem will ever be solved.


Philosophies ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Fiorella Battaglia

Moral issues arise not only when neural technology directly influences and affects people’s lives, but also when the impact of its interventions indirectly conceptualizes the mind in new, and unexpected ways. It is the case that theories of consciousness, theories of subjectivity, and third person perspective on the brain provide rival perspectives addressing the mind. Through a review of these three main approaches to the mind, and particularly as applied to an “extended mind”, the paper identifies a major area of transformation in philosophy of action, which is understood in terms of additional epistemic devices—including a legal perspective of regulating the human–machine interaction and a personality theory of the symbiotic connection between human and machine. I argue this is a new area of concern within philosophy, which will be characterized in terms of self-objectification, which becomes “alienation” following Ernst Kapp’s philosophy of technology. The paper argues that intervening in the brain can affect how we conceptualize the mind and modify its predicaments.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7334
Author(s):  
Seongwoog Oh ◽  
Jungsuek Oh

This paper proposes a novel design for a chip-on-probe with the aim of overcoming the heat dissipation effect during brain stimulations using modulated microwave signals. The temperature of the stimulus chip during normal operation is generally 40 °C–60 °C, which is sufficient to cause unintended temperature effects during stimulation. This effect is particularly fatal in brain stimulation applications that require repeated stimulation. This paper proposes, for the first time, a topology that vertically separates the stimulus chip generating the stimulus signal and the probe delivering the signal into the brain to suppress the heat transfer while simultaneously minimizing the radio frequency (RF) transmission loss. As the proposed chip-on-probe should be attached to the head of a small animal, an auxiliary board with a heat sink was carefully designed considering the weight that does not affect the behavior experiment. When the transition structures are properly designed, a heat sink can be mounted to maximize the cooling effect, reducing the temperature by more than 13 °C in a simulation when the heat generated by the chip is transferred to the brain, while the transition from the chip to the probe experiences a loss of 1.2 dB. Finally, the effectiveness of the proposed design is demonstrated by fabricating a chip with the 0.28 μm silicon-on-insulator (SOI) complementary metal–oxide–semiconductor (CMOS) process and a probe with a RT6010 printed-circuit board (PCB), showing a temperature reduction of 49.8 °C with a maximum output power of 11 dBm. In the proposed chip-on-probe device, the temperature formed in the area in contact with the brain is measured at 31.1 °C.


Sign in / Sign up

Export Citation Format

Share Document