scholarly journals Resting State Networks Related to the Maintenance of Good Cognitive Performance During Healthy Aging

2021 ◽  
Vol 15 ◽  
Author(s):  
Satoshi Maesawa ◽  
Satomi Mizuno ◽  
Epifanio Bagarinao ◽  
Hirohisa Watanabe ◽  
Kazuya Kawabata ◽  
...  

Purpose: Maintenance of cognitive performance is important for healthy aging. This study aims to elucidate the relationship between brain networks and cognitive function in subjects maintaining relatively good cognitive performance.Methods: A total of 120 subjects, with equal number of participants from each age group between 20 and 70 years, were included in this study. Only participants with Addenbrooke’s Cognitive Examination – Revised (ACE-R) total score greater than 83 were included. Anatomical T1-weighted MR images and resting-state functional MR images (rsfMRIs) were taken from all participants using a 3-tesla MRI scanner. After preprocessing, several factors associated with age including the ACE-R total score, scores of five domains, sub-scores of ACE-R, and brain volumes were tested. Morphometric changes associated with age were analyzed using voxel based morphometry (VBM) and changes in resting state networks (RSNs) were examined using dual regression analysis.Results: Significant negative correlations with age were seen in the total gray matter volume (GMV, r = −0.58), and in the memory, attention, and visuospatial domains. Among the different sub-scores, the score of the delayed recall (DR) showed the highest negative correlation with age (r = −0.55, p < 0.001). In VBM analysis, widespread regions demonstrated negative correlation with age, but none with any of the cognitive scores. Quadratic approximations of cognitive scores as functions of age showed relatively delayed decline compared to total GMV loss. In dual regression analysis, some cognitive networks, including the dorsal default mode network, the lateral dorsal attention network, the right / left executive control network, the posterior salience network, and the language network, did not demonstrate negative correlation with age. Some regions in the sensorimotor networks showed positive correlation with the DR, memory, and fluency scores.Conclusion: Some domains of the cognitive test did not correlate with age, and even the highly correlated sub-scores such as the DR score, showed delayed decline compared to the loss of total GMV. Some RSNs, especially involving cognitive control regions, were relatively maintained with age. Furthermore, the scores of memory, fluency, and the DR were correlated with the within-network functional connectivity values of the sensorimotor network, which supported the importance of exercise for maintenance of cognition.

Author(s):  
Riikka Rytty ◽  
Juha Nikkinen ◽  
Liisa Paavola ◽  
Ahmed Abou Elseoud ◽  
Virpi Moilanen ◽  
...  

2018 ◽  
Vol 19 ◽  
pp. 948-962 ◽  
Author(s):  
K. Conwell ◽  
B. von Reutern ◽  
N. Richter ◽  
J. Kukolja ◽  
G.R. Fink ◽  
...  

2021 ◽  
Author(s):  
Eleanna Varangis ◽  
Weiwei Qi ◽  
Yaakov Stern ◽  
Seonjoo Lee

AbstractStudies assessing relationships between brain and cognitive changes in healthy aging have shown that a variety of aspects of brain structure and function explain a significant portion of the variability in cognitive outcomes throughout adulthood. Many studies assessing relationships between brain function and cognition have utilized time-averaged, or static functional connectivity methods to explore ways in which brain network organization may contribute to aspects of cognitive aging. However, recent studies in this field have suggested that time-varying, or dynamic measures of functional connectivity, which assess changes in functional connectivity throughout a scan session, may play a stronger role in explaining cognitive outcomes in healthy young adults. Further, both static and dynamic functional connectivity studies suggest that there may be differences in patterns of brain-cognition relationships as a function of whether or not the participant is performing a task during the scan. Thus, the goals of the present study were threefold: (1) assess whether dynamic connectivity (neural flexibility) during both resting as well as task-based scans is related to participant age and cognitive performance in a lifespan aging sample, (2) determine whether neural flexibility moderates relationships between age and cognitive performance, and (3) explore differences in neural flexibility between rest and task. Participants in the study were 423 healthy adults between the ages of 20-80 who provided resting state and/or task-based (Matrix Reasoning) functional magnetic resonance imaging (fMRI) scan data as part of their participation in two ongoing studies of cognitive aging. Neural flexibility measures from both resting and task-based scans reflected the number of times each node changed network assignment, and were averaged both across the whole brain (global neural flexibility) as well as within nine somatosensory/cognitive networks. Results showed that neural flexibility during the task was higher in older adults, and that neural flexibility in Default Mode and Visual networks was negatively related to performance on the Matrix Reasoning task. Resting state neural flexibility was not significantly related to either participant age or cognitive performance. Additionally, no neural flexibility measures that significantly moderated relationships between participant age and cognitive outcomes. Further, neural flexibility differed as a function of scan type, with resting state neural flexibility exhibiting significantly more variability than task-based neural flexibility. Thus, neural flexibility measures computed during a cognitive task may be more strongly related to cognitive performance across the adult lifespan, and are more sensitive to the effects of participant age on brain organization.


2019 ◽  
Author(s):  
Joanes Grandjean ◽  
David Buehlmann ◽  
Michaela Buerge ◽  
Hannes Sigrist ◽  
Erich Seifritz ◽  
...  

AbstractHallucinogenic agents have been proposed as potent antidepressants; this includes the serotonin (5-HT) receptor 2A agonist psilocybin. In human subjects, psilocybin alters functional connectivity (FC) within the default-mode network (DMN), a constellation of inter-connected regions that is involved in self-reference and displays altered FC in depressive disorders. In this study we investigated the effects of psilocybin on FC in the analogue of the DMN in mouse, with a view to establishing an experimental animal model to investigate underlying mechanisms. Psilocybin effects were investigated in lightly-anaesthetized mice using resting-state fMRI. Dual-regression analysis identified reduced FC within the ventral striatum in psilocybin-relative to vehicle-treated mice. Refinement of the analysis using spatial references derived from both gene expression maps and viral tracer projection fields revealed two distinct effects of psilocybin: it increased FC between 5-HT-associated networks and elements of the murine DMN, thalamus, and midbrain; it decreased FC within dopamine (DA)-associated striatal networks. These results suggest that interaction between 5-HT- and DA-regulated neural networks contributes to the neural and therefore psychological effects of psilocybin. Furthermore, they highlight how information on molecular expression patterns and structural connectivity can assist in the interpretation of pharmaco-fMRI findings.


2018 ◽  
Vol 76 (9) ◽  
pp. 575-581
Author(s):  
Helena Dresch Vascouto ◽  
Maria Emília Rodrigues de Oliveira Thais ◽  
Camila Moreira Osório ◽  
Juliana Ben ◽  
Lucia Sukys Claudino ◽  
...  

ABSTRACT Sleepiness and cognitive impairment are common symptoms observed in patients with epilepsy. We investigate whether self-reported sleepiness is associated with cognitive performance in patients with refractory mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). Seventy-one consecutive patients with MTLE-HS were evaluated with the Stanford Sleepiness Scale (SSS) before neuropsychological evaluation. Their mean SSS scores were compared with controls. Each cognitive test was compared between patients with (SSS ≥ 3) or without sleepiness (SSS < 3). Imbalances were controlled by regression analysis. Patients reported a significantly higher degree of sleepiness than controls (p < 0.0001). After multiple linear regression analysis, only one test (RAVLT total) remained associated with self-reported sleepiness. Conclusion: Self-reported sleepiness was significantly higher in MTLE-HS patients than controls, but did not affect their cognitive performance. If confirmed in other populations, our results may have implications for decision making about sleepiness screening in neuropsychological settings.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Eleni L. Vlahou ◽  
Franka Thurm ◽  
Iris-Tatjana Kolassa ◽  
Winfried Schlee

2021 ◽  
Author(s):  
Ignacio Rebollo ◽  
Catherine Tallon-Baudry

Bodily rhythms appear as novel scaffolding mechanisms orchestrating the spatio-temporal organization of spontaneous brain activity. Here, we follow up on the discovery of the gastric resting-state network (Rebollo et al, 2018), composed of brain regions in which the fMRI signal is phase-synchronized to the slow (0.05 Hz) electrical rhythm of the stomach. Using a larger sample size (n=63 human participants), we further characterize the anatomy and effect sizes of gastric-brain coupling across resting-state networks, a fine grained cortical parcellation, as well as along the main gradients of cortical organization. Most (67%) of the gastric network is included in the somato-motor-auditory (38%) and visual (29%) resting state networks. Gastric brain coupling also occurs in the granular insula and, to a lesser extent, in the piriform cortex. Thus, all sensory and motor cortices corresponding to both exteroceptive and interoceptive modalities are coupled to the gastric rhythm during rest. Conversely, little gastric-brain coupling occurs in cognitive networks and transmodal regions. These results suggest not only that gastric rhythm and sensory-motor processes are likely to interact, but also that gastric-brain coupling might be a mechanism of sensory and motor integration that mostly bypasses cognition, complementing the classical hierarchical organization of the human brain.


2019 ◽  
Author(s):  
Thomas H. Alderson ◽  
Arun L.W. Bokde ◽  
J.A.Scott. Kelso ◽  
Liam Maguire ◽  
Damien Coyle

AbstractDespite resting state networks being associated with a variety of cognitive abilities, it remains unclear how these local areas act in concert to express particular cognitive operations. Theoretical and empirical accounts indicate that large-scale resting state networks reconcile dual tendencies toward integration and segregation by operating in a metastable regime of their coordination dynamics. One proposal is that metastability confers important behavioural qualities by dynamically binding distributed local areas into large-scale neurocognitive entities. We tested this hypothesis by analysing fMRI data in a large cohort of healthy individuals (N=566) and comparing the metastability of the brain’s large-scale resting network architecture at rest and during the performance of several tasks. Task-based reasoning was principally characterised by high metastability in cognitive control networks and low metastability in sensory processing areas. Although metastability between resting state networks increased during task performance, cognitive ability was more closely linked to spontaneous activity. High metastability in the intrinsic connectivity of cognitive control networks was linked to novel problem solving (or fluid intelligence) but was less important in tasks relying on prior experience (or crystallised intelligence). Crucially, subjects with resting architectures similar or ‘pre-configured’ to a task-general arrangement demonstrated superior cognitive performance. Taken together, our findings support a critical linkage between the spontaneous metastability of the large-scale networks of the cerebral cortex and cognition.


Sign in / Sign up

Export Citation Format

Share Document