scholarly journals Imbalances in Copper or Zinc Concentrations Trigger Further Trace Metal Dyshomeostasis in Amyloid-Beta Producing Caenorhabditis elegans

2021 ◽  
Vol 15 ◽  
Author(s):  
Ada Metaxas

Alzheimer's Disease (AD), a progressive neurodegenerative disease characterized by the buildup of amyloid-beta (Aβ) plaques, is believed to be a disease of trace metal dyshomeostasis. Amyloid-beta is known to bind with high affinity to trace metals copper and zinc. This binding is believed to cause a conformational change in Aβ, transforming Aβ into a configuration more amenable to forming aggregations. Currently, the impact of Aβ-trace metal binding on trace metal homeostasis and the role of trace metals copper and zinc as deleterious or beneficial in AD remain elusive. Given that Alzheimer's Disease is the sixth leading cause of adult death in the U.S., elucidating the molecular interactions that characterize Alzheimer's Disease pathogenesis will allow for better treatment options. To that end, the model organism C. elegans is used in this study. C. elegans, a transparent nematode whose connectome has been fully established, is an amenable model to study AD phenomena using a multi-layered, interconnected approach. Aβ-producing and non-Aβ-producing C. elegans were individually supplemented with copper and zinc. On day 6 and day 9 after synchronization, the percent of worms paralyzed, concentration of copper, and concentration of zinc were measured in both groups of worms. This study demonstrates that dyshomeostasis of trace metals copper or zinc triggers further trace metal dyshomeostasis in Aβ-producing worms, while dyshomeostasis of copper or zinc triggers a return to equilibrium in non-Aβ-producing worms. This supports the characterization of Alzheimer's Disease as a disease of trace metal dyshomeostasis.

Author(s):  
Sanjib Guha ◽  
Sarah Fischer ◽  
Gail VW Johnson ◽  
Keith Nehrke

ABSTRACTBackgroundA defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear.MethodsHuman 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E and T231A, to mimic phosphorylation and phospho-ablation of a commonly observed pathological epitope, respectively, and K274/281Q, to mimic disease-associated lysine acetylation. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age, and genetically-encoded fluorescent biosensors were used to measure the morphological dynamics and turnover of touch neuron mitochondria.ResultsUnlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage mitophagy in response to mitochondrial stress.ConclusionsLimiting the expression of tau results in a genetic model where pathological modifications and age result in evolving phenotypes, which may more closely resemble the normal progression of AD. The finding that disease-associated PTMs suppress compensatory responses to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


2022 ◽  
pp. 1-15
Author(s):  
Kaitlyn E. Stepler ◽  
Taneisha R. Gillyard ◽  
Calla B. Reed ◽  
Tyra M. Avery ◽  
Jamaine S. Davis ◽  
...  

African American/Black adults are twice as likely to have Alzheimer’s disease (AD) compared to non-Hispanic White adults. Genetics partially contributes to this disparity in AD risk, among other factors, as there are several genetic variants associated with AD that are more prevalent in individuals of African or European ancestry. The phospholipid-transporting ATPase ABCA7 (ABCA7) gene has stronger associations with AD risk in individuals with African ancestry than in individuals with European ancestry. In fact, ABCA7 has been shown to have a stronger effect size than the apolipoprotein E (APOE) ɛ4 allele in African American/Black adults. ABCA7 is a transmembrane protein involved in lipid homeostasis and phagocytosis. ABCA7 dysfunction is associated with increased amyloid-beta production, reduced amyloid-beta clearance, impaired microglial response to inflammation, and endoplasmic reticulum stress. This review explores the impact of ABCA7 mutations that increase AD risk in African American/Black adults on ABCA7 structure and function and their contributions to AD pathogenesis. The combination of biochemical/biophysical and ‘omics-based studies of these variants needed to elucidate their downstream impact and molecular contributions to AD pathogenesis is highlighted.


Metabolites ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 380
Author(s):  
Seunghee Na ◽  
Hyeonseok Jeong ◽  
Jong-Sik Park ◽  
Yong-An Chung ◽  
In-Uk Song

The neuropathology of Parkinson’s disease dementia (PDD) is heterogenous, and the impacts of each pathophysiology and their synergistic effects are not fully understood. The aim of this study was to evaluate the frequency and impacts of co-existence with Alzheimer’s disease in patients with PDD by using 18F-florbetaben PET imaging. A total of 23 patients with PDD participated in the study. All participants underwent 18F-florbetaben PET and completed a standardized neuropsychological battery and assessment of motor symptoms. The results of cognitive tests, neuropsychiatric symptoms, and motor symptoms were analyzed between the positive and negative 18F-florbetaben PET groups. Four patients (17.4%) showed significant amyloid burden. Patients with amyloid-beta showed poorer performance in executive function and more severe neuropsychiatric symptoms than those without amyloid-beta. Motor symptoms assessed by UPDRS part III and the modified H&Y Scale were not different between the two groups. The amyloid PET scan of a patient with PDD can effectively reflect a co-existing Alzheimer’s disease pathology. Amyloid PET scans might be able to help physicians of PDD patients showing rapid progression or severe cognitive/behavioral features.


2019 ◽  
Vol 15 (7) ◽  
pp. P197
Author(s):  
Lore Gruenbaum ◽  
Kumpal Madrasi ◽  
Lin Lin ◽  
Hafiz Abdul ◽  
Fei Hua ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 639-639
Author(s):  
Rachel Litke ◽  
Bik Tzu Huang ◽  
Damian Gonzalez ◽  
Martine Rampanana ◽  
Nicholas Grimaldi ◽  
...  

Abstract Current treatments of Alzheimer’s Disease (AD) are largely ineffective and do not address underlying pathophysiological processes. The model organism C. elegans has been successfully used to discover compounds to treat human diseases, some now in clinical trials. To develop novel drugs and explore pathways to treat AD, we took on a forward pharmacological approach with a C. elegans model for AD, completed with studies to expand results to lifespan as well as healthspan. We screened 2560 drugs from the Microsource Spectrum library for their ability to delay proteotoxicity (indicated by paralysis) in an Abeta transgenic C. elegans muscle model of AD (CL2006) in liquid medium. Among the most protective drugs were phenothiazines, which are orally active and cross the blood-brain barrier, desirable properties of drugs to treat AD. 80 phenothiazines congeners were further assessed; 60% were protective in CL2006 worms. 9/20 tested phenothiazines increased lifespan in N2 worms and 2/3 phenothiazines tested promoted significantly higher pharyngeal pumping rates compared with control till day 10 of adulthood in N2 worms. 2 of the drugs were protective in the C. elegans neuronal model of AD. This phenotypic screening approach led to the discovery of potential drugs to treat AD. These phenothiazines protect against Abeta toxicity, and assessment of efficacy to protect against other forms of proteotoxicity are ongoing. These studies suggest the utility of C. elegans to discover drugs to treat human diseases. Future studies will assess molecular mechanisms mediating the protective effects of these compounds.


2017 ◽  
Author(s):  
Felix Heiner ◽  
Björn Feistel ◽  
Michael Wink

Background. Beyond its traditional uses in the Balkan area, Sideritis scardica (known as Greek mountain tea, Lamiaceae) is currently extensively investigated for its pharmacological activity in the central nervous system. Antidepressant, psychostimulating, cognition-enhancing and neuroprotective properties have been described. In this study, we tested hydroalcoholic extracts of S. scardica for their potential to counteract amyloid-β toxicity and aggregation, which plays a crucial role in the pathogenesis of Alzheimer's disease. Methods. For this purpose, we have chosen the nematode Caenorhabditis elegans, which is used as a model organism for neurodegenerative diseases. The concentration of different polyphenols in extracts prepared from water, 20, 40, 50, and 70 % ethanol was analysed by HPLC. Additionally, polar and unpolar fractions were prepared from the 40 % ethanolic extract and phytochemically analysed. Results. Essentially, the contents of all measured constituents increased with the lipophilicity of the extraction solvents. Treatment of transgenic C. elegans strains expressing amyloid-β with the extracts resulted in a reduced number of peptide aggregates in the head region of the worms and alleviated toxicity of amyloid-β, observable through the degree of paralysed animals. The mid-polar extracts (40 and 50 % ethanol) turned out be the most active, decreasing the plaque number by 21 % and delaying the amyloid-β-induced paralysis by up to 3.5 h. The more lipophilic extract fractions exhibited higher activity than the hydrophilic ones. Discussion. Sideritis scardica extracts demonstrated pharmacological activity against characteristics of Alzheimer's disease also in C. elegans, supporting current efforts to assess its potential for the treatment of cognitive decline. The active principle as well as the mode of action needs to be investigated in more detail.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4683 ◽  
Author(s):  
Felix Heiner ◽  
Björn Feistel ◽  
Michael Wink

BackgroundBeyond its traditional uses in the Balkan area,Sideritis scardica(known as Greek mountain tea, Lamiaceae) is currently extensively investigated for its pharmacological activity in the central nervous system. Antidepressant, psychostimulating, cognition-enhancing and neuroprotective properties have been described. In this study, we tested hydroalcoholic extracts ofS. scardicafor their potential to counteract amyloid-β toxicity and aggregation, which plays a crucial role in the pathogenesis of Alzheimer’s disease.MethodsFor this purpose, we have chosen the nematodeCaenorhabditis elegans, which is used as a model organism for neurodegenerative diseases. The concentration of different polyphenols in extracts prepared from water, 20, 40, 50, and 70% ethanol was analysed by HPLC. Additionally, polar and unpolar fractions were prepared from the 40% ethanolic extract and phytochemically analysed.ResultsEssentially, the contents of all measured constituents increased with the lipophilicity of the extraction solvents. Treatment of transgenicC. elegansstrains expressing amyloid-β with the extracts resulted in a reduced number of peptide aggregates in the head region of the worms and alleviated toxicity of amyloid-β, observable through the degree of paralysed animals. The mid-polar extracts (40 and 50% ethanol) turned out be the most active, decreasing the plaque number by 21% and delaying the amyloid-β-induced paralysis by up to 3.5 h. The more lipophilic extract fractions exhibited higher activity than the hydrophilic ones.DiscussionSideritis scardicaextracts demonstrated pharmacological activity against characteristics of Alzheimer’s disease also inC. elegans, supporting current efforts to assess its potential for the treatment of cognitive decline. The active principle as well as the mode of action needs to be investigated in more detail.


2017 ◽  
Author(s):  
Felix Heiner ◽  
Björn Feistel ◽  
Michael Wink

Background. Beyond its traditional uses in the Balkan area, Sideritis scardica (known as Greek mountain tea, Lamiaceae) is currently extensively investigated for its pharmacological activity in the central nervous system. Antidepressant, psychostimulating, cognition-enhancing and neuroprotective properties have been described. In this study, we tested hydroalcoholic extracts of S. scardica for their potential to counteract amyloid-β toxicity and aggregation, which plays a crucial role in the pathogenesis of Alzheimer's disease. Methods. For this purpose, we have chosen the nematode Caenorhabditis elegans, which is used as a model organism for neurodegenerative diseases. The concentration of different polyphenols in extracts prepared from water, 20, 40, 50, and 70 % ethanol was analysed by HPLC. Additionally, polar and unpolar fractions were prepared from the 40 % ethanolic extract and phytochemically analysed. Results. Essentially, the contents of all measured constituents increased with the lipophilicity of the extraction solvents. Treatment of transgenic C. elegans strains expressing amyloid-β with the extracts resulted in a reduced number of peptide aggregates in the head region of the worms and alleviated toxicity of amyloid-β, observable through the degree of paralysed animals. The mid-polar extracts (40 and 50 % ethanol) turned out be the most active, decreasing the plaque number by 21 % and delaying the amyloid-β-induced paralysis by up to 3.5 h. The more lipophilic extract fractions exhibited higher activity than the hydrophilic ones. Discussion. Sideritis scardica extracts demonstrated pharmacological activity against characteristics of Alzheimer's disease also in C. elegans, supporting current efforts to assess its potential for the treatment of cognitive decline. The active principle as well as the mode of action needs to be investigated in more detail.


2017 ◽  
Vol 112 (3) ◽  
pp. 159a-160a
Author(s):  
Tessa Sinnige ◽  
Prashanth Ciryam ◽  
Christopher M. Dobson ◽  
Mario de Bono ◽  
Michele Vendruscolo

Sign in / Sign up

Export Citation Format

Share Document