scholarly journals New Insight Into the Structure-Activity Relationship of Sweet-Tasting Proteins: Protein Sector and Its Role for Sweet Properties

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiangzhong Zhao ◽  
Congrui Wang ◽  
Yue Zheng ◽  
Bo Liu

Sweet-tasting protein is a kind of biomacromolecule that has remarkable sweetening power and is regarded as the promising sugar replacer in the future. Some sweet-tasting proteins has been used in foods and beverages. However, the structure and function relationship of these proteins is still elusive, and guidelines for their protein engineering is limited. It is well-known that the sweet-tasting proteins bind to and activate the sweet taste receptor T1R2/T1R3, thus eliciting their sweetness. The “wedge-model” for describing the interaction between sweet-tasting proteins and sweet taste receptor to elucidate their sweetness has been reported. In this perspective article, we revealed that the intramolecular interaction forces in sweet-tasting proteins is directly correlated to their properties (sweetness and stability). This intramolecular interaction pattern, named as “protein sector,” refers to a small subset of residues forming physically connections, which cooperatively affect the function of the proteins. Based on the analysis of previous experimental data, we suggest that “protein sector” of sweet-tasting proteins is pivotal for their sweet properties, which are meaningful guidelines for the future protein engineering.

1982 ◽  
Vol 175 (4) ◽  
pp. 266-268 ◽  
Author(s):  
Jean-Marie Tinti ◽  
Claude Nofre ◽  
Anne-Marie Peytavi

2012 ◽  
Vol 303 (4) ◽  
pp. E464-E474 ◽  
Author(s):  
Maartje C. P. Geraedts ◽  
Tatsuyuki Takahashi ◽  
Stephan Vigues ◽  
Michele L. Markwardt ◽  
Andongfac Nkobena ◽  
...  

The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K+(KATP) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3−/−mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3+/+, but not T1R3−/−, ileum explants; this secretion was not mimicked by the KATPchannel blocker glibenclamide. T1R2−/−mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was KATPchannel-dependent and glucose-specific emerged in the large intestine of T1R3−/−mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB.


2016 ◽  
Vol 25 (3) ◽  
pp. 711-719 ◽  
Author(s):  
Kiran K. Singarapu ◽  
Marco Tonelli ◽  
John L. Markley ◽  
Fariba M. Assadi-Porter

Sign in / Sign up

Export Citation Format

Share Document