scholarly journals Long-Term Overconsumption of Fat and Sugar Causes a Partially Reversible Pre-inflammatory Bowel Disease State

2021 ◽  
Vol 8 ◽  
Author(s):  
Djésia Arnone ◽  
Marie Vallier ◽  
Sébastien Hergalant ◽  
Caroline Chabot ◽  
Ndeye Coumba Ndiaye ◽  
...  

Nutrition appears to be an important environmental factor involved in the onset of inflammatory bowel diseases (IBD) through yet poorly understood biological mechanisms. Most studies focused on fat content in high caloric diets, while refined sugars represent up to 40% of caloric intake within industrialized countries and contribute to the growing epidemics of inflammatory diseases. Herein we aim to better understand the impact of a high-fat-high-sucrose diet on intestinal homeostasis in healthy conditions and the subsequent colitis risk. We investigated the early events and the potential reversibility of high caloric diet-induced damage in mice before experimental colitis. C57BL/6 mice were fed with a high-fat or high-fat high-sucrose or control diet before experimental colitis. In healthy mice, a high-fat high-sucrose diet induces a pre-IBD state characterized by gut microbiota dysbiosis with a total depletion of bacteria belonging to Barnesiella that is associated with subclinical endoscopic lesions. An overall down-regulation of the colonic transcriptome converged with broadly decreased immune cell populations in the mesenteric lymph nodes leading to the inability to respond to tissue injury. Such in-vivo effects on microbiome and transcriptome were partially restored when returning to normal chow. Long-term consumption of diet enriched in sucrose and fat predisposes mice to colitis. This enhanced risk is preceded by gut microbiota dysbiosis and transcriptional reprogramming of colonic genes related to IBD. Importantly, diet-induced transcriptome and microbiome disturbances are partially reversible after switching back to normal chow with persistent sequelae that may contribute to IBD predisposition in the general population.

Nutrition ◽  
2019 ◽  
Vol 60 ◽  
pp. 175-184 ◽  
Author(s):  
Cheng Kong ◽  
Renyuan Gao ◽  
Xuebing Yan ◽  
Linsheng Huang ◽  
Huanlong Qin

2016 ◽  
Vol 57 (1) ◽  
pp. 339-349 ◽  
Author(s):  
Eunice Molinar-Toribio ◽  
Elisabet Fuguet ◽  
Sara Ramos-Romero ◽  
Núria Taltavull ◽  
Lucía Méndez ◽  
...  

2016 ◽  
Vol 425 ◽  
pp. 123-132 ◽  
Author(s):  
Jinxue Ruan ◽  
Yuanyuan Zhang ◽  
Jing Yuan ◽  
Leilei Xin ◽  
Jihan Xia ◽  
...  

2016 ◽  
Vol 310 (8) ◽  
pp. E662-E675 ◽  
Author(s):  
Yu Yasutake ◽  
Akiko Mizokami ◽  
Tomoyo Kawakubo-Yasukochi ◽  
Sakura Chishaki ◽  
Ichiro Takahashi ◽  
...  

Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion, pancreatic β-cell proliferation, and adiponectin expression in adipocytes. Previously, we showed that long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level, improved glucose tolerance, and increased the fasting serum insulin concentration as well as pancreatic β-cell area in female mice fed a normal or high-fat, high-sucrose diet. We have now performed similar experiments with male mice and found that such GluOC administration induced glucose intolerance, insulin resistance, and adipocyte hypertrophy in those fed a high-fat, high-sucrose diet. In addition, GluOC increased the circulating concentration of testosterone and reduced that of adiponectin in such mice. These phenotypes were not observed in male mice fed a high-fat, high-sucrose diet after orchidectomy, but they were apparent in orchidectomized male mice or intact female mice that were fed such a diet and subjected to continuous testosterone supplementation. Our results thus reveal a sex difference in the effects of GluOC on glucose homeostasis. Given that oral administration of GluOC has been considered a potentially safe and convenient option for the treatment or prevention of metabolic disorders, this sex difference will need to be taken into account in further investigations.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142884 ◽  
Author(s):  
Li Li ◽  
Zhanzhao Zhao ◽  
Jihan Xia ◽  
Leilei Xin ◽  
Yaoxing Chen ◽  
...  

2020 ◽  
Author(s):  
Fei Huang ◽  
Ruozhi Zhao ◽  
Mi Xia ◽  
Garry Shen

Abstract Background Type 2 Diabetes (T2D) has become one of most common and harmful chronic diseases worldwide. T2D is characterized as insulin resistant and is often associated with unhealthy dietary habits. The present study assessed the effects of freeze-dried Saskatoon berry powder (SBp) and cyanidin-3-glucoside (C3G, an anthocyanin enriched in SBp) on metabolism, inflammatory markers and gut microbiota in high fat-high sucrose diet (HFHS) diet induced insulin resistant mice. Results Male C57 BL/6J mice received control, HFHS, HFHS + SBp (8.0 g/kg body weight/day) or HFHS + C3G (7.2 mg/kg/day, equal amount of C3G in 8.0 g/kg/day SBp) diet for 11 weeks. HFHS diet significantly increased the levels of glucose, cholesterol, triglycerides, insulin resistance and inflammatory mediators in plasma. The results of 16S rRNA gene sequencing demonstrated that HFHS diet increased the ratio of Bacteroidetes/Firmicutes (B/F) phylum bacteria and an elevated abundance of Muriculaceae family bacteria in the feces of mice. SBp or C3G supplementation attenuated HFHS diet-induced disorders in metabolism and inflammatory markers, and increased B/F ratio and Muriculaceae abundance in mouse gut compared to HFHS diet alone. The abundance of Muriculaceae in the gut microbiota negatively correlated with body weight, glucose, lipids, insulin resistance and inflammatory mediators in mice. The results of functional predication analysis suggest that HFHS diet upregulated the genes of gut bacteria involved in inflammation-related cellular processes, and inhibited bacteria involved in metabolism. SBp and C3G partially neutralized the alterations induced by HFHS diet in gut microbiota implicated in metabolism or inflammation. Conclusion The findings of the present study suggest that SBp is a potential prebiotic food mitigating Western diet-induced disorders in metabolism, inflammation and gut dysbiosis, and C3G possibly contributes to the beneficial effects of SBp.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8893 ◽  
Author(s):  
Miki Igarashi ◽  
Miku Morimoto ◽  
Asuka Suto ◽  
Akiho Nakatani ◽  
Tetsuhiko Hayakawa ◽  
...  

Background Dietary fiber, including inulin, promotes health via fermentation products, such as short-chain fatty acids (SCFAs), produced from the fiber by gut microbiota. SCFAs exert positive physiological effects on energy metabolism, gut immunity, and the nervous system. Most of the commercial inulin is extracted from plant sources such as chicory roots, but it can also be enzymatically synthesized from sucrose using inulin producing enzymes. Studies conducted on rodents fed with a cafeteria diet have suggested that while increasing plasma propionic acid, synthetic inulin modulates glucose and lipid metabolism in the same manner as natural inulin. Therefore, this study aimed to determine the effects of a synthetic inulin, Fuji FF, on energy metabolism, fecal SCFA production, and microbiota profiles in mice fed with a high-fat/high-sucrose diet. Methods Three-week-old male C57BL/6J mice were fed a high-fat/high-sucrose diet containing cellulose or Fuji FF for 12 weeks, and the effects on energy metabolism, SCFA production, and microbiota profiles were evaluated. Results Body weight gain was inhibited by Fuji FF supplementation in high-fat/high-sucrose diet-fed C57BL/6J mice by reducing white adipose tissue weight while increasing energy expenditure, compared with the mice supplemented with cellulose. Fuji FF also elevated levels of acetic, propionic and butyric acids in mouse feces and increased plasma propionic acid levels in mice. Moreover, 16S rRNA gene amplicon sequencing of fecal samples revealed an elevated abundance of Bacteroidetes and a reduced abundance of Firmicutes at the phylum level in mice supplemented with Fuji FF compared to those supplemented with cellulose. Fuji FF also resulted in abundance of the family Bacteroidales S24-7 and reduction of Desulfovibrionaceae in the feces. Conclusion Long term consumption of Fuji FF improved the gut environment in mice by altering the composition of the microbiota and increasing SCFA production, which might be associated with its anti-obesity effects.


2021 ◽  
Vol 77 ◽  
pp. 104332
Author(s):  
Xin Li ◽  
Licong Yang ◽  
Meng Xu ◽  
Gaoxiang Qiao ◽  
ChangJiang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document