scholarly journals Predictive Role of the Apparent Diffusion Coefficient and MRI Morphologic Features on IDH Status in Patients With Diffuse Glioma: A Retrospective Cross-Sectional Study

2021 ◽  
Vol 11 ◽  
Author(s):  
Jun Zhang ◽  
Hong Peng ◽  
Yu-Lin Wang ◽  
Hua-Feng Xiao ◽  
Yuan-Yuan Cui ◽  
...  

PurposeTo evaluate isocitrate dehydrogenase (IDH) status in clinically diagnosed grade II~IV glioma patients using the 2016 World Health Organization (WHO) classification based on MRI parameters.Materials and MethodsOne hundred and seventy-six patients with confirmed WHO grade II~IV glioma were retrospectively investigated as the study set, including lower-grade glioma (WHO grade II, n = 64; WHO grade III, n = 38) and glioblastoma (WHO grade IV, n = 74). The minimum apparent diffusion coefficient (ADCmin) in the tumor and the contralateral normal-appearing white matter (ADCn) and the rADC (ADCmin to ADCn ratio) were defined and calculated. Intraclass correlation coefficient (ICC) analysis was carried out to evaluate interobserver and intraobserver agreement for the ADC measurements. Interobserver agreement for the morphologic categories was evaluated by Cohen’s kappa analysis. The nonparametric Kruskal-Wallis test was used to determine whether the ADC measurements and glioma subtypes were related. By univariable analysis, if the differences in a variable were significant (P<0.05) or an image feature had high consistency (ICC >0.8; κ >0.6), then it was chosen as a predictor variable. The performance of the area under the receiver operating characteristic curve (AUC) was evaluated using several machine learning models, including logistic regression, support vector machine, Naive Bayes and Ensemble. Five evaluation indicators were adopted to compare the models. The optimal model was developed as the final model to predict IDH status in 40 patients with glioma as the subsequent test set. DeLong analysis was used to compare significant differences in the AUCs.ResultsIn the study set, six measured variables (rADC, age, enhancement, calcification, hemorrhage, and cystic change) were selected for the machine learning model. Logistic regression had better performance than other models. Two predictive models, model 1 (including all predictor variables) and model 2 (excluding calcification), correctly classified IDH status with an AUC of 0.897 and 0.890, respectively. The test set performed equally well in prediction, indicating the effectiveness of the trained classifier. The subgroup analysis revealed that the model predicted IDH status of LGG and GBM with accuracy of 84.3% (AUC = 0.873) and 85.1% (AUC = 0.862) in the study set, and with the accuracy of 70.0% (AUC = 0.762) and 70.0% (AUC = 0.833) in the test set, respectively.ConclusionThrough the use of machine-learning algorithms, the accurate prediction of IDH-mutant versus IDH-wildtype was achieved for adult diffuse gliomas via noninvasive MR imaging characteristics, including ADC values and tumor morphologic features, which are considered widely available in most clinical workstations.

Author(s):  
Meysam Haghighi Borujeini ◽  
Masoume Farsizaban ◽  
Shiva Rahbar Yazdi ◽  
Alaba Tolulope Agbele ◽  
Gholamreza Ataei ◽  
...  

Abstract Background Our purpose was to evaluate the application of volumetric histogram parameters obtained from conventional MRI and apparent diffusion coefficient (ADC) images for grading the meningioma tumors. Results Tumor volumetric histograms of preoperative MRI images from 45 patients with the diagnosis of meningioma at different grades were analyzed to find the histogram parameters. Kruskal-Wallis statistical test was used for comparison between the parameters obtained from different grades. Multi-parametric regression analysis was used to find the model and parameters with high predictive value for the classification of meningioma. Mode; standard deviation on post-contrast T1WI, T2-FLAIR, and ADC images; kurtosis on post-contrast T1WI and T2-FLAIR images; mean and several percentile values on ADC; and post-contrast T1WI images showed significant differences among different tumor grades (P < 0.05). The multi-parametric linear regression showed that the ADC histogram parameters model had a higher predictive value, with cutoff values of 0.212 (sensitivity = 79.6%, specificity = 84.3%) and 0.180 (sensitivity = 70.9%, specificity = 80.8%) for differentiating the grade I from II, and grade II from III, respectively. Conclusions The multi-parametric model of volumetric histogram parameters in some of the conventional MRI series (i.e., post-contrast T1WI and T2-FLAIR images) along with the ADC images are appropriate for predicting the meningioma tumors’ grade.


2021 ◽  
Author(s):  
Shenglin Li ◽  
Qing Zhou ◽  
Peng Zhang ◽  
Shize Ma ◽  
Caiqiang Xue ◽  
...  

Abstract Objiective: This study evaluated the value of the apparent diffusion coefficient (ADC) in distinguishing grade II and III intracranial solitary fibrous tumors /hemangiopericytomas and explored the correlation between ADC and Ki-67. Methods The preoperative MRIs of 37 patients treated for solitary fibrous tumor/hemangiopericytoma (grade II, n = 15 and grade III, n = 22) in our hospital from 2011 to October 2020 were retrospectively analyzed. We compared the difference between the minimum, average, maximum, and relative ADCs based on tumor grade and examined the correlation between ADC and Ki-67. Receiver operating characteristic curve analysis was used to analyze the diagnostic efficiency of the ADC. Results There were significant differences in the average, minimum, and relative ADCs between grade II and III patients. The optimal cutoff value for the relative ADC value to differentiate grade II and III tumors was 0.998, which yielded an area under the curve of 0.879. The Ki-67 proliferation indexes of grade II and III tumors were significantly different, and the average (r = -0.427), minimum (r = -0.356), and relative (r = -0.529) ADCs were significantly negatively correlated with the Ki-67 proliferation index. Conclusions ADC can be used to differentiate grade II and III intracranial solitary fibrous tumors/hemangiopericytomas. Our results can be used to formulate a personalized surgical treatment plan before surgery.


2021 ◽  
Vol 10 ◽  
Author(s):  
Jinke Xie ◽  
Basen Li ◽  
Xiangde Min ◽  
Peipei Zhang ◽  
Chanyuan Fan ◽  
...  

ObjectiveTo evaluate a combination of texture features and machine learning-based analysis of apparent diffusion coefficient (ADC) maps for the prediction of Grade Group (GG) upgrading in Gleason score (GS) ≤6 prostate cancer (PCa) (GG1) and GS 3 + 4 PCa (GG2).Materials and methodsFifty-nine patients who were biopsy-proven to have GG1 or GG2 and underwent MRI examination with the same MRI scanner prior to transrectal ultrasound (TRUS)-guided systemic biopsy were included. All these patients received radical prostatectomy to confirm the final GG. Patients were divided into training cohort and test cohort. 94 texture features were extracted from ADC maps for each patient. The independent sample t-test or Mann−Whitney U test was used to identify the texture features with statistically significant differences between GG upgrading group and GG non-upgrading group. Texture features of GG1 and GG2 were compared based on the final pathology of radical prostatectomy. We used the least absolute shrinkage and selection operator (LASSO) algorithm to filter features. Four supervised machine learning methods were employed. The prediction performance of each model was evaluated by area under the receiver operating characteristic curve (AUC). The statistical comparison between AUCs was performed.ResultsSix texture features were selected for the machine learning models building. These texture features were significantly different between GG upgrading group and GG non-upgrading group (P &lt; 0.05). The six features had no significant difference between GG1 and GG2 based on the final pathology of radical prostatectomy. All machine learning methods had satisfactory predictive efficacy. The diagnostic performance of nearest neighbor algorithm (NNA) and support vector machine (SVM) was better than random forests (RF) in the training cohort. The AUC, sensitivity, and specificity of NNA were 0.872 (95% CI: 0.750−0.994), 0.967, and 0.778, respectively. The AUC, sensitivity, and specificity of SVM were 0.861 (95%CI: 0.732−0.991), 1.000, and 0.722, respectively. There had no significant difference between AUCs in the test cohort.ConclusionA combination of texture features and machine learning-based analysis of ADC maps could predict PCa GG upgrading from biopsy to radical prostatectomy non-invasively with satisfactory predictive efficacy.


2020 ◽  
Vol 2 (3-4) ◽  
pp. 41-46
Author(s):  
Huiyu Huang ◽  
Yong Zhang ◽  
Jingliang Cheng ◽  
Mengmeng Wen

Abstract Objective To study the value of whole-tumor histogram analysis which is based on apparent diffusion coefficient maps in grading diagnosis of ependymoma. Methods 71 patients with ependymal tumors were retrospectively analyzed, including 13 cases of WHO grade I, 28 cases of WHO grade II, and 30 cases of WHO grade III. Mazda software was used to draw the region of interest (ROI) in the apparent diffusion coefficient maps of three groups on every layer of tumor level. The whole-tumor gray histogram analysis was carried to obtained nine characteristic parameters, including mean, variance, kurtosis, skewness, Perc.01%, Perc.10%, Perc.50%, Perc.90%, and Perc.99%. When the parameters satisfy the test of normal distribution and homogeneity of variance, single factor analysis of variance (ANOVA) was carried to compare the three groups and LSD t test was performed to compare the two groups. Besides, the ROC curve was used to analyze the diagnostic efficacy of the parameters. Results Variance, Perc.01%, and Perc.10% had significant differences among the three groups (all P < 0.05). The remaining six parameters had no significant difference among the three groups (all P > 0.05). And, between WHO I and WHO II, the sensitivity and specificity of the Perc.10% were 85.7% and 100.0%, the AUC was 0.872, and the cut-off was 126.5. Between WHO I and WHO III, the sensitivity and specificity of the Perc.10% were 85.7% and 87.7%, the AUC was 0.835, and the optimum critical value was 131.33. Besides, the sensitivity, specificity, and AUC of variance between WHO II and WHO III are 68.4%, 76.9%, 0.794, and 2645.7, respectively. They had higher identification efficiency. Conclusion Whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps could provide ancillary diagnostic value in grading diagnosis of ependymoma. Perc.10% had a high diagnostic efficiency.


2011 ◽  
Vol 13 (11) ◽  
pp. 1192-1201 ◽  
Author(s):  
I. S. Khayal ◽  
S. R. VandenBerg ◽  
K. J. Smith ◽  
C. P. Cloyd ◽  
S. M. Chang ◽  
...  

2009 ◽  
Vol 22 (4) ◽  
pp. 449-455 ◽  
Author(s):  
Inas S. Khayal ◽  
Tracy R. McKnight ◽  
Colleen McGue ◽  
Scott Vandenberg ◽  
Kathleen R. Lamborn ◽  
...  

Author(s):  
Chen Chen ◽  
Yuhui Qin ◽  
Haotian Chen ◽  
Junying Cheng ◽  
Bo He ◽  
...  

Abstract Objective We used radiomics feature–based machine learning classifiers of apparent diffusion coefficient (ADC) maps to differentiate small round cell malignant tumors (SRCMTs) and non-SRCMTs of the nasal and paranasal sinuses. Materials A total of 267 features were extracted from each region of interest (ROI). Datasets were randomized into two sets, a training set (∼70%) and a test set (∼30%). We performed dimensional reductions using the Pearson correlation coefficient and feature selection analyses (analysis of variance [ANOVA], relief, recursive feature elimination [RFE]) and classifications using 10 machine learning classifiers. Results were evaluated with a leave-one-out cross-validation analysis. Results We compared the AUC for all the pipelines in the validation dataset using FeAture Explorer (FAE) software. The pipeline using RFE feature selection and Gaussian process classifier yielded the highest AUCs with ten features. When the “one-standard error” rule was used, FAE produced a simpler model with eight features, including Perc.01%, Perc.10%, Perc.90%, Perc.99%, S(1,0) SumAverg, S(5,5) AngScMom, S(5,5) Correlat, and WavEnLH_s-2. The AUCs of the training, validation, and test datasets achieved 0.995, 0.902, and 0.710, respectively. For ANOVA, the pipeline with the auto-encoder classifier yielded the highest AUC using only one feature, Perc.10% (training/validation/test datasets: 0.886/0.895/0.809, respectively). For the relief, the AUCs of the training, validation, and test datasets that used the LRLasso classifier using five features (Perc.01%, Perc.10%, S(4,4) Correlat, S(5,0) SumAverg, S(5,0) Contrast) were 0.892, 0.886, and 0.787, respectively. Compared with the RFE and relief, the results of all algorithms of ANOVA feature selection were more stable with the AUC values higher than 0.800. Conclusions We demonstrated the feasibility of combining artificial intelligence with the radiomics from ADC values in the differential diagnosis of SRCMTs and non-SRCMTs and the potential of this non-invasive approach for clinical applications. Key Points • The parameter with the best diagnostic performance in differentiating SRCMTs from non-SRCMTs was the Perc.10% ADC value. • Results of all the algorithms of ANOVA feature selection were more stable and the AUCs were higher than 0.800, as compared with RFE and relief. • The pipeline using RFE feature selection and Gaussian process classifier yielded the highest AUC.


Sign in / Sign up

Export Citation Format

Share Document