scholarly journals Novel Nanocrystal Injection of Insoluble Drug Anlotinib and Its Antitumor Effects on Hepatocellular Carcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Mei Luo ◽  
Huiwei Sun ◽  
Qiyu Jiang ◽  
Yantao Chai ◽  
Congshu Li ◽  
...  

The molecularly targeted agent anlotinib offers a novel therapeutic strategy against advanced hepatocellular carcinoma (HCC). With this study, we aimed to solve the technical problem of anlotinib being insoluble in injectable solutions; we also aimed to assess the antitumor activity of anlotinib on hepatocellular carcinoma cells. We prepared an anlotinib nanocrystal injection by wet grinding, and we optimized the prescription process using a transmission electron microscope (TEM) and a laser particle size analyzer (LPSA). The release of anlotinib from the injected nanocrystals was evaluated using LC-MS/MS in vitro, and the drug’s anti-tumor effects were assessed in a nude mice tumor model. The anlotinib nanocrystals had a uniform particle size distribution (the average nanoparticle size was ~200 nm). The preparation of anlotinib into nanocrystals did not change the original crystal structure. The intravenous injection of anlotinib nanocrystals achieved anti-tumor activity at very low doses compared to those required for oral administration of an anlotinib suspension: anlotinib nanocrystals at a dose of 50 μg/kg inhibited the subcutaneous growth of the HCC cell line MHCC97-H; whereas the dose of anlotinib suspension required for an equivalent effect was 1 mg/kg. Therefore, our novel anlotinib nanocrystal injection preparation provides an option for achieving a safe and effective molecularly targeted therapy against advanced HCC.

2020 ◽  
Author(s):  
Yaoting Chen ◽  
Huiqing Li ◽  
Dong Chen ◽  
Xiongying Jiang ◽  
Weidong Wang ◽  
...  

Abstract Background : Although arsenic trioxide (ATO) is used in the treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not satisfactory in terms of improving HCC patients’ overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible-1α (HIF-1α) may result in ATO-resistance and tumor progression. We investigated the mechanisms involving HIF-1α expression and acquired ATO chemoresistance in HCC cells and mice. Methods: The therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and a xenograft model in vivo . mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO-resistance. VEGF secretion was tested using ELISA and tube-formation assays. Results : Compared to normoxic cells, hypoxic HCC cells were more resistant to ATO, with higher IC 50 values and less apoptosis, and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in the supernatant of ATO-treated HCC cells, and this change can potentiate angiogenesis in vitro . HIF-1α inhibition attenuated ATO-resistance and angiogenesis, and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. Conclusions : Hypoxic HCC cells acquire ATO resistance by upregulating HIF-1α levels; thus, combining ATO with a HIF-1α-targeting agent may lead to enhanced antitumor effects in HCC.


2020 ◽  
Author(s):  
Yaoting Chen ◽  
Huiqing Li ◽  
Dong Chen ◽  
Xiongying Jiang ◽  
Weidong Wang ◽  
...  

Abstract Background : Although arsenic trioxide (ATO) is used in the treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not satisfactory in terms of improving HCC patients’ overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible-1α (HIF-1α) may result in ATO-resistance and tumor progression. We investigated the mechanisms involving HIF-1α expression and acquired ATO chemoresistance in HCC cells and mice. Methods: The therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and a xenograft model in vivo . mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO-resistance. VEGF secretion was tested using ELISA and tube-formation assays. Results : Compared to normoxic cells, hypoxic HCC cells were more resistant to ATO, with higher IC 50 values and less apoptosis, and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in the supernatant of ATO-treated HCC cells, and this change can potentiate angiogenesis in vitro . HIF-1α inhibition attenuated ATO-resistance and angiogenesis, and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. Conclusions : Hypoxic HCC cells acquire ATO resistance by upregulating HIF-1α levels; thus, combining ATO with a HIF-1α-targeting agent may lead to enhanced antitumor effects in HCC.


2019 ◽  
Author(s):  
Yaoting Chen ◽  
Huiqing Li ◽  
Dong Chen ◽  
Xiongying Jiang ◽  
Weidong Wang ◽  
...  

Abstract Background: Although arsenic trioxide (ATO) is used in treatment of advanced hepatocellular carcinoma (HCC) in clinical trials, it is not yet satisfied in improving HCC patients’ overall survival. Intratumoral hypoxia and overexpression of hypoxia-inducible factor-1α (HIF-1α) may result in ATO-resistance and tumor progression. We investigated the mechanisms between HIF-1α expression and acquired ATO-chemoresistance in HCC cells and in mice. Methods: Therapeutic effects of ATO in normoxic and hypoxic HCC cells were assessed using cell viability and apoptosis assays in vitro and xenografts model. mRNA and protein expression of HIF-1α, P-glycoprotein, and VEGF were measured by qRT-PCR and western blotting. HIF-1α inhibition was performed to investigate the mechanism of ATO-resistance. VEGF secretion was tested using ELISA and tube-formation assay. Results: Hypoxic HCC cells showed more resistance to ATO, with higher IC50 values and less apoptosis, than normoxic cells and upregulated HIF-1α protein expression, accompanied with the enhancement of P-glycoprotein and VEGF synthesis after ATO treatment. VEGF secretion was elevated in ATO-treated supernatant to potentiate angiogenesis in vitro. HIF-1α inhibition attenuated ATO-resistance and angiogenesis, and promoted the anticancer effects of ATO both in vitro and in vivo by downregulating therapy-induced P-glycoprotein and VEGF overexpression. Conclusions: Hypoxic HCC cells acquire ATO-resistance by upregulating HIF-1α levels; thus ATO combined with targeting HIF-1α levels may lead to the enhanced antitumor effects in HCC. Keywords: hepatocellular carcinoma, arsenic trioxide, drug resistance, HIF-1α, targeted therapy


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 875
Author(s):  
Katerina Spyridopoulou ◽  
Tamara Aravidou ◽  
Evangeli Lampri ◽  
Eleni Effraimidou ◽  
Aglaia Pappa ◽  
...  

Lippia citriodora is a flowering plant cultivated for its lemon-scented leaves and used in folk medicine for the preparation of tea for the alleviation of symptoms of gastrointestinal disorders, cold, and asthma. The oil extracted from the plant leaves was shown to possess antioxidant potential and to exert antiproliferative activity against breast cancer. The aim of this study was to further investigate potential antitumor effects of L. citriodora oil (LCO) on breast cancer. The in vitro antiproliferative activity of LCO was examined against murine DA3 breast cancer cells by the sulforhodamine B assay. We further explored the LCO’s pro-apoptotic potential with the Annexin-PI method. The LCO’s anti-migratory effect was assessed by the wound-healing assay. LCO was found to inhibit the growth of DA3 cells in vitro, attenuate their migration, and induce apoptosis. Finally, oral administration of LCO for 14 days in mice inhibited by 55% the size of developing tumors in the DA3 murine tumor model. Noteworthy, in the tumor tissue of LCO-treated mice the apoptotic marker cleaved caspase-3 was elevated, while a reduced protein expression of survivin was observed. These results indicate that LCO, as a source of bioactive compounds, has a very interesting nutraceutical potential.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A750-A750
Author(s):  
Sojin Lee ◽  
Joon Young Park ◽  
Goo-Young Kim ◽  
Sang Woo Jo ◽  
Minhyuk Yun ◽  
...  

BackgroundSuccessful clinical translation of mRNA therapeutics requires an appropriate delivery strategy to overcome instability of mRNA and facilitate cellular uptake into the cells.1 Several lipid based nanoparticle approaches that encapsulate mRNA, notably lipid nanoparticle (LNP), have been developed, but their efficiency for delivery to certain target tissues and toxicity profiles still have room for improvement. The application of a novel polymer based nanoparticle technology platform, so called Stability Enhanced Nano Shells (SENS) for mRNA (mSENS) as a mRNA delivery platform for a cancer vaccine was demonstrated.MethodsThe physicochemical properties of mSENS formulation, particle size and encapsulation efficiency, were characterized using dynamic light scattering (DLS) and gel retardation assay. Using luciferase-encoding mRNA, the protein expression levels in vitro and in vivo were evaluated by luciferase assay or bioluminescence imaging (BLI), respectively. For cancer vaccine studies, antigen (tyrosinase-related protein 2 (Trp-2))-specific T cell responses were assessed by immunophenotyping mouse splenocytes using flow cytometry and by the enzyme-linked immunosorbent spot (ELISPOT) assay. The anti-tumor efficacy was studied in B16F10 lung tumor model in C57BL/6 mice. Liver and systemic toxicity of mSENS treated mice was evaluated through blood chemistry and complete blood count (CBC) tests.ResultsA library of mSENS formulations complexed with luciferase-encoding mRNA, were characterized for their particle size, surface charge, encapsulation efficiency, colloidal stability, and in vitro and in vivo luciferase protein expression level. Upon systemic administration in mice, varying biodistribution profiles were observed, implicating the potential for tailored delivery to target tissues. Particularly, cancer vaccine application was further developed leveraging the formulation with preferential spleen delivery. Following vaccination with Trp-2 mRNA encapsulated with mSENS (Trp-2 mRNA-mSENS) in B16F10 tumor bearing mice, strong Trp-2 antigen-specific IFN-γ T-cell responses were observed. Generated anti-tumor immunity also marked suppression of B16F10 lung tumors were observed in Trp-2-mSENS immunized mice compared to non-immunized controls, demonstrating the potential of mSENS as a mRNA delivery platform for the application for vaccine.ConclusionsProprietary biodegradable polymer based-mSENS platform offers an attractive delivery strategy for mRNA by tailoring to specific therapeutic applications. Depending on the application, whether it’s a vaccine or protein replacement, a rationally designed mSENS formulation can efficiently distribute mRNA to specific tissues. In particular, application of a splenic mSENS formulation for a cancer vaccine has been demonstrated in murine tumor model. In summary, mRNA delivery through mSENS platform is expected to provide significant opportunities in clinical development for mRNA therapeutics.Ethics ApprovalThe study was approved by Samyang Biopharmaceuticals’ IACUC (Institutional Animal Care and Use Committee), approval number SYAU-2027.ReferencePiotr S. Kowalski, Arnab Rudra, Lei Miao, and Daniel G. Anderson, delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy Vol. 27 No 4 April 2019.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Junjie Xu ◽  
Lin Ji ◽  
Yuelong Liang ◽  
Zhe Wan ◽  
Wei Zheng ◽  
...  

AbstractSorafenib is the first-line chemotherapeutic therapy for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance significantly limits its therapeutic efficacy, and the mechanisms underlying resistance have not been fully clarified. Here we report that a circular RNA, circRNA-SORE (a circular RNA upregulated in sorafenib-resistant HCC cells), plays a significant role in sorafenib resistance in HCC. We found that circRNA-SORE is upregulated in sorafenib-resistant HCC cells and depletion of circRNA-SORE substantially increases the cell-killing ability of sorafenib. Further studies revealed that circRNA-SORE binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 nuclear interaction with the E3 ubiquitin ligase PRP19 and thus blocks PRP19-mediated YBX1 degradation. Moreover, our in vitro and in vivo results suggest that circRNA-SORE is transported by exosomes to spread sorafenib resistance among HCC cells. Using different HCC mouse models, we demonstrated that silencing circRNA-SORE by injection of siRNA could substantially overcome sorafenib resistance. Our study provides a proof-of-concept demonstration for a potential strategy to overcome sorafenib resistance in HCC patients by targeting circRNA-SORE or YBX1.


2021 ◽  
Author(s):  
Ilaria Romito ◽  
Manuela Porru ◽  
Maria Rita Braghini ◽  
Luca Pompili ◽  
Nadia Panera ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors, alone or in combination with SOR, using in vitro and in vivo models of HCC. Methods The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was then tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. Results TAE226 emerged as the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of the nuclear interactome of FAK. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation causing an increase of histone H3 lysine 27 acetylation, counteracting its trimethylation by decreasing the nuclear amount of HDAC1/2. Conclusions Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduce HCC growth in vitro and in vivo. Our data also highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising therapeutic approaches for HCC.


2020 ◽  
Vol 10 (3) ◽  
pp. 472-476
Author(s):  
Bhagyalakshmi Nair ◽  
Ruby John Anto ◽  
Sabitha M ◽  
Lekshmi R. Nath

Purpose : Sorafenib is the sole FDA approved drug conventionally used for the treatment of advanced hepatocellular carcinoma (HCC). Despite of the beneficial use of sorafenib in the treatment of HCC, multidrug resistance still remains a challenge. HCC is inherently known as chemotherapy resistant tumor due to P-glycoprotein (P-gp)-mediated multidrug resistance. Methods: We studied the interaction energy of kaempferol with human multidrug resistance protein-1 (RCSB PDB ID: 2CBZ) using in silico method with the help of BIOVIA Discovery Studio. HepG2 and N1S1 liver cancer cell lines were treated in suitable cell culture media to evaluate the efficacy of kaempferol in chemo-sensitizing liver cancer cells towards the effect of sorafenib. Cell viability study was performed by MTT assay. Results: In silico analysis of kaempferol showed best docking score of 23.14 with Human Multi Drug Resistant Protein-1 (RCSB PDB ID: 2CBZ) compared with positive control verapamil. In in-vitro condition, combination of sub-toxic concentrations of both kaempferol and sorafenib produced 50% cytotoxicity with concentration of 2.5 µM each which indicates that kaempferol has the ability to reverse the MDR by decreasing the over-expression of P-gp. Conclusion: Kaempferol is able to sensitize the HepG2 and N1S1 against the sub-toxic concentration of sorafenib. Hence, we consider that the efficacy of sorafenib chemotherapy can be enhanced by the significant approach of combining the sub-toxic concentrations of sorafenib with kaempferol. Thus, kaempferol can be used as a better candidate molecule along with sorafenib for enhancing its efficacy, if validated through preclinical studies.


2020 ◽  
Vol 483 ◽  
pp. 87-97 ◽  
Author(s):  
Shunnan Yao ◽  
Jianpin Ye ◽  
Mengqi Yin ◽  
Rui Yu

Sign in / Sign up

Export Citation Format

Share Document