scholarly journals Morphine Exacerbates Experimental Colitis-Induced Depression of Nesting in Mice

2021 ◽  
Vol 2 ◽  
Author(s):  
Stanley M. Cheatham ◽  
Karan H. Muchhala ◽  
Eda Koseli ◽  
Joanna C. Jacob ◽  
Essie Komla ◽  
...  

Opioids and non-steroidal anti-inflammatory drugs (NSAIDs) are excellent analgesics, but recent clinical evidence suggests that these drugs might worsen disease severity in Crohn's disease patients, limiting their clinical utility for treating Inflammatory Bowel Disease (IBD). One indicator of change in well-being from conditions such as IBD is behavioral depression and disruption to activities of daily living. Preclinical measures of behavioral depression can provide an indicator of changes in quality of life and subsequent modification by candidate analgesics. In mice, nesting is an adaptive unconditioned behavior that is susceptible to disruption by noxious stimuli, and some types of pain related nesting depression are responsive to opioid and NSAID analgesics. Here we show that a 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) model of experimental colitis depresses nesting behavior in mice, and we evaluated effects of morphine, an opioid, and ketoprofen, a NSAID, on TNBS-induced nesting depression. In Swiss Webster mice, TNBS significantly reduced nesting that peaked on Day 3 and recovered in a time-dependent manner with complete recovery by Day 7. In the absence of colonic inflammation, daily treatment with morphine (1–10 mg/kg) did not decrease nesting except at 10mg/kg/day. However, in TNBS-treated mice 3.2 mg/kg/day morphine significantly exacerbated TNBS-induced nesting depression and delayed recovery. While 3.2 mg/kg/day morphine alone did not alter locomotor activity and TNBS-induced depression of locomotion recovered, the combination of TNBS and 3.2 mg/kg/day morphine significantly attenuated locomotion and prevented recovery. Daily treatment with 3.2 or 10 mg/kg ketoprofen in TNBS-treated mice did not prevent depression of nesting. These data suggest that opioid analgesics but not NSAIDS worsen colonic inflammation-induced behavioral depression. Furthermore, these findings highlight the importance of evaluating analgesic effects in models of colonic inflammation induced depression of behavior.

2006 ◽  
Vol 2006 ◽  
pp. 1-9 ◽  
Author(s):  
Yan-Hong Zhou ◽  
Jie-Ping Yu ◽  
Yi-Fei Liu ◽  
Xiao-Jun Teng ◽  
Mei Ming ◽  
...  

Inflammatory mediators play a criticial role in ulcerative colitis immune and inflammatory processes. The aim of the study was to investigate the effects ofGinkgo bilobaextract on inflammatory mediators (SOD, MDA, TNF-α, NF-κBp65, IL-6) in TNBS-induced colitis in rats. Colitis in rats was induced by colonic administration with 2,4,6-trinitrobenzene sulfonic acid (TNBS, 150 mg/kg). EGB in doses of (50, 100, 200 mg/kg) was administered for 4 weeks to protect colitis. The results showed that EGB could significantly ameliorate macroscopic and histological damage, evidently elevate the activities of SOD and reduce the contents of MDA, inhibit the protein and mRNA expressions of TNF-α, NF-κBp65, and IL-6 in the colon tissues of experimental colitis in a dose-dependent manner compared with the model group. We concluded that the probable mechanisms of EGB ameliorated inflammatory injury in TNBS-induced colitis in rats by its modulation of inflammatory mediators and antioxidation.


2011 ◽  
Vol 300 (4) ◽  
pp. G568-G576 ◽  
Author(s):  
Tetsumasa Sasaoka ◽  
Masayuki Ito ◽  
Junji Yamashita ◽  
Kenji Nakajima ◽  
Issei Tanaka ◽  
...  

Inflammatory bowel disease (IBD) represents a group of chronic inflammatory diseases characterized by inflammation and relapsing gastrointestinal disorders. Recent studies have shown that Th17 cells, which are well known as key mediators of chronic inflammation, have a pivotal role in onset and development of IBD in humans and mice, alike. In recent years, it has been reported that IL-27, which is an IL-12-related heterodimeric cytokine consisting of EBI3 and p28 subunits, act directly on naive T cells to suppress the differentiation of Th17 cells. However, effects of exogenous IL-27 on the IBD are not well elucidated. To clarify the suppressive effect of IL-27 treatment on IBD, we applied the flexible linking method to EBI3 and p28 subunits and generated a single-chain human IL-27 (scIL-27). scIL-27 inhibited xenogenic mouse Th17 cell differentiation in vitro, indicating that scIL-27 also acts in mouse immune systems. In a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse acute colitis model, subcutaneous scIL-27 treatment significantly improved the colon length, extent of necrosis, and ulceration and thickened epithelium and several pathological scores in a dose-dependent manner. scIL-27 clearly suppressed several inflammatory cytokines, including IL-17, in inflamed colon, except for anti-inflammatory cytokine IL-10. The mesenteric lymph node cells from scIL-27-treated mice also exhibited a reduced inflammatory response and, furthermore, a lower population of Th17 cells than those of PBS-treated mice. Finally, we showed the therapeutic efficacy of scIL-27 on TNBS-induced colitis even after active colitis was established. These results suggest new possible therapeutic approaches for IBD, including disorders such as Crohn's disease and ulcerative colitis.


2020 ◽  
Vol 9 (3) ◽  
pp. 164-184
Author(s):  
Raymond Brewer ◽  
Kenneth Blum ◽  
Abdalla Bowirrat ◽  
Edward J. Modestino ◽  
David Baron ◽  
...  

Neuroscientists and psychiatrists working in the areas of “pain and addiction” are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This prodopamine regulator may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.


Author(s):  
Yong Fu ◽  
Gailing Ma ◽  
Yuqian Zhang ◽  
Wenli Wang ◽  
Tongguo Shi ◽  
...  

Abstract Background Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. Methods The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium–induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. Results Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01–treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. Conclusions We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.


1999 ◽  
Vol 57 (3B) ◽  
pp. 753-760 ◽  
Author(s):  
TEREZINHA DE JESUS T. SANTOS ◽  
CARLOS M. DE CASTRO-COSTA ◽  
SÍLVIO D. A. GIFFONI ◽  
FRANKLIN J. C. SANTOS ◽  
RODRIGO S. N. RAMOS ◽  
...  

Baclofen (beta-p-chlorophenyl-GABA) has been used in humans to treat spasticity, as well as trigeminal neuralgia. Since GABA (gamma-aminobutyric acid) has been implicated in inhibitory and analgesic effects in the nervous system, it was of interest to study the effect of baclofen in experimental neuropathic pain. With this purpose, experiments were carried out in 17 neuropathic rats with constrictive sciatic injury, as described by Bennet and Xie (1988), taking as pain parameters scratching behaviour and the latency to the thermal nociceptive stimulus. The results showed that baclofen induces, in a dose-dependent manner, significant decrease (p < 0.05) of scratching behaviour and significant increase (p < 0.05) of the latency to the nociceptive thermal stimulus. The absence of antagonism of naloxone suggested a non-participation of an opioid-mediated mechanism in this analgesic effect of baclofen on experimental neuropathic pain.


1995 ◽  
Vol 18 (12) ◽  
pp. 786-793 ◽  
Author(s):  
R. Schiel ◽  
R. Bambauer ◽  
U. A. Müller

A total of 47 patients suffering from heterozygous hyperlipidemia were treated with LDL-apheresis (24 patients, aged 49.5±11.5 years), diet and/or lipid-lowering drugs or with diet and lipid-lowering drugs only (23 patients, aged 48.0±11.9 years). After treatment periods of 44.4±14.3 (apheresis group) and 33.5±15.9 (drug group) months, respectively, the ensuing results revealed significant differences (p<0.0001): total cholesterol decreased from 10.4 to 5.5 vs 9.9 to 8.7 mmol/l, LDL from 7.4 to 3.9 vs 6.6 to 5.2 mmol/l, triglycerides from 5.8 to 3.7 vs 4.8 to 4.1 mmol/l and the LDL/HDL-ratio decreased from 7.1 to 3.4 vs 6.7 to 5.8. In the apheresis group one patient died from myocardial infarction vs one non-fatal myocardial infarction and the manifestation of coronary heart disease in three cases in the drug group. There were no severe side-effects in either group. All patients in the apheresis group experienced an increased clinical performance. On the other hand physological well-being of these patients was lower than that of the drug group (scores 42.3±8.9 vs 50.2±9.9, p<0.002). The present trial suggests that a continuing reduction in serum lipid concentrations may lower in a dose dependent manner the risk of development and progression of coronary heart disease. With respect to clinical and laboratory results, LDL-apheresis seems safe and appears to be the most effective therapy.


2015 ◽  
Vol 18;4 (4;18) ◽  
pp. E615-E628
Author(s):  
Lei Chen

Background: Chronic pancreatitis (CP) is a long-standing inflammation of the exocrine pancreas, which typically results in severe and constant abdominal pain. Previous studies on the mechanisms underlying CP-induced pain have primarily focused on the peripheral nociceptive system. A role for a central mechanism in the mediation or modulation of abdominal pain is largely unknown. Tanshinone IIA (TSN IIA), an active component of the traditional Chinese medicine Danshen, exhibits anti-inflammatory properties via downregulation of the expression of high-mobility group protein B1 (HMGB1), a late proinflammatory cytokine. HMGB1 binds and activates toll-like receptor 4 (TLR4) to induce spinal astrocyte activation and proinflammatory cytokine release in neuropathic pain. Objective: In this study, we investigated the effect of TSN IIA on pain responses in rats with trinitrobenzene sulfonic acid (TNBS)-induced CP. The roles of central mechanisms in the mediation or modulation of CP were also investigated. Study Design: A randomized, double-blind, placebo-controlled animal trial. Methods: CP was induced in rats by intrapancreatic infusion of trinitrobenzene sulfonic acid (TNBS). Pancreatic histopathological changes were characterized with semi-quantitative scores. The abdomen nociceptive behaviors were assessed with von Frey filaments. The effects of intraperitoneally administered TSN IIA on CP-induced mechanical allodynia were tested. The spinal protein expression of HMGB1 was determined by western blot. The spinal mRNA and protein expression of proinflammatory cytokines IL-1β, TNF-α, and IL-6 were determined by RT-PCR and western blot, respectively. The spinal expression of the HMGB1 receptor TRL4 and the astrocyte activation marker glial fibrillary acidic protein (GFAP) were determined by western blot or immunohistological staining after intraperitoneal injection of TSN IIA or intrathecal administration of a neutralizing anti-HMGB1 antibody. Results: TNBS infusion resulted in pancreatic histopathological changes of chronic pancreatitis and mechanical allodynia in rats. TSN IIA significantly attenuated TNBS-induced mechanical allodynia in a dose-dependent manner. TNBS significantly increased the spinal expression of HMGB1 and proinflammatory cytokines IL-1β, TNF-α, and IL-6. These TNBS-induced changes were significantly inhibited by TSN IIA in a dose-dependent manner. Furthermore, TSN IIA, but not the neutralizing anti-HMGB1 antibody, significantly inhibited TNBS-induced spinal TLR4 and GFAP expression. Limitations: In addition to TLR4, HMGB1 can also bind to toll-like receptor-2 (TLR2) and the receptor for advanced glycation end products (RAGE). Additional studies are warranted to ascertain whether HMGB1 contributes to CP-induced pain through activation of these receptors. Conclusions: Our results suggest that spinal HMGB1 contributes to the development of CPinduced pain and can potentially be a therapeutic target. TSN IIA attenuates CP-induced pain via downregulation of spinal HMGB1 and TRL4 expression. Therefore, TSN IIA may be a potential anti-nociceptive drug for the treatment of CP-induced pain. Key words: Chronic pancreatitis, HMGB1, proinflammatory cytokine, Tanshinone IIA, spinal cord, astrocyte, TLR4


Drug Research ◽  
2017 ◽  
Vol 68 (04) ◽  
pp. 196-204 ◽  
Author(s):  
Marcelo Silva ◽  
Wagner Vilegas ◽  
Marcelo da Silva ◽  
Ana Paiotti ◽  
Mauricio Pastrelo ◽  
...  

AbstractThe aim of this study was to evaluate the preventive and/or protective action of Mimosa caesalpiniifolia (M. caesalpiniifolia) following experimental colitis in rats. The rats were randomized into ten groups (n=10 per group), as follows: G1 – Sham group:; G2 – TNBS group; G3, G4 –colitis and treated with hydroalcoholic extract of M. caesalpiniifolia 250 mg/kg/day after and before/after inducing colitis, respectively; G5, G6 – colitis and treated with hydroalcoholic extract of M. caesalpiniifolia at 125 mg/kg/day after and before/after inducing colitis respectively; G7,G8 – colitis and treated with ethylacetate fraction of M. caesalpiniifolia at 50 mg/kg/day after and before/after inducing colitis, respectively; G9,G10 – colitis and treated with ethylacetate fraction of M. caesalpiniifolia at 50 mg/kg/day after and before/after inducing colitis, respectively. Rats treated with hydroalcoholic extract of M. caesalpiniifolia for both doses showed lower tissue damage in the distal colon. Ethylacetate fraction was effective at the highest dose only when administrated after inducing colitis. A downregulation of COX-2 was detected to rats suffering colitis and treated with M. caesalpiniifolia at high dose. On the other hand, TNF-alpha immunoexpression decreased in groups treated with M. caesalpiniifolia at low dose after inducing colitis. In summary, our results suggest that M. caesalpiniifolia attenuated the lesions of the colon, reduced inflammation, and modulates the expression of COX-2 and TNF-α during chronic colitis induced by TNBS when using for therapeutic purposes on a dose-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document