HG-9-91-01 Attenuates Murine Experimental Colitis by Promoting Interleukin-10 Production in Colonic Macrophages Through the SIK/CRTC3 Pathway

Author(s):  
Yong Fu ◽  
Gailing Ma ◽  
Yuqian Zhang ◽  
Wenli Wang ◽  
Tongguo Shi ◽  
...  

Abstract Background Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. Methods The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium–induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. Results Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01–treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. Conclusions We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jérôme Breton ◽  
Coline Plé ◽  
Laetitia Guerin-Deremaux ◽  
Bruno Pot ◽  
Catherine Lefranc-Millot ◽  
...  

The beneficial effects of carbohydrate-derived fibers are mainly attributed to modulation of the microbiota, increased colonic fermentation, and the production of short-chain fatty acids. We studied the direct immune responses to alimentary fibers inin vitroandin vivomodels. Firstly, we evaluated the immunomodulation induced by nine different types of low-digestible fibers on human peripheral blood mononuclear cells. None of the fibers tested induced cytokine production in baseline conditions. However, only one from all fibers almost completely inhibited the production of anti- and proinflammatory cytokines induced by bacteria. Secondly, the impact of short- (five days) and long-term (three weeks) oral treatments with selected fibers was assessed in the trinitrobenzene-sulfonic acid colitis model in mice. The immunosuppressive fiber significantly reduced levels of inflammatory markers over both treatment periods, whereas a nonimmunomodulatory fiber had no effect. The two fibers did not differ in terms of the observed fermentation products and colonic microbiota after three weeks of treatment, suggesting that the anti-inflammatory action was not related to prebiotic properties. Hence, we observed a direct effect of a specific fiber on the murine immune system. This intrinsic, fiber-dependent immunomodulatory potential may extend prebiotic-mediated protection in inflammatory bowel disease.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


1997 ◽  
Vol 273 (2) ◽  
pp. R623-R629 ◽  
Author(s):  
N. Vergnolle ◽  
C. Comera ◽  
J. More ◽  
M. Alvinerie ◽  
L. Bueno

Lipocortin 1 is considered a mediator of the anti-inflammatory actions of glucocorticoids. We have shown that this protein is overexpressed and secreted during an experimental colitis induced by intraluminal injection of trinitrobenzenesulfonic acid (TNBS) in rats. We studied here the in vivo regulation of lipocortin 1 expression and secretion in this model, either by glucocorticoids using adrenalectomized or dexamethasone-treated (3 mg/24 h) animals or by pituitary factors using hypophysectomized animals. Inflammation was evaluated by measuring myeloperoxidase activity and by histological scoring of the damage. Lipocortin 1 was detected by immunoblotting, and its secretion was studied by incubating colonic specimens in-culture medium. In the colon of TNBS-injected animals, cumulative histological damage scores were increased in adrenalectomized and decreased in dexamethasone-treated animals compared with control and hypophysectomized animals. The colons of all TNBS-injected animals (controls, adrenalectomized, dexamethasone treated, hypophysectomized) overexpressed and secreted lipocortin 1. In conclusion, the induction of lipocortin 1 overexpression and secretion during this colitis occurs independently of glucocorticoids or pituitary factors.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mizuko Osaka ◽  
Sumihiko Hagita ◽  
Masayuki Yoshida

Objective. To monitor the anti-inflammatory effect of rosuvastatin in leukocyte endothelial interactions in the atheroprone femoral artery in vivo.Methods and Results. Male Apolipoprotein E null mice (ApoE−/− mice, 6 weeks old) were fed a high-fat diet (20% fat, 1.25% cholesterol) with or without the HMG CoA reductase inhibitor rosuvastatin (10 mg/kg/day) for 6 weeks. Significant leukocyte adhesion was observed in the femoral artery of ApoE−/− mice, but not of wild type mice, in the absence of rosuvastatin. Interestingly, no obvious plaque formation was observed in the artery at this time point. The number of adherent leukocytes was dramatically diminished in ApoE−/− mice treated with rosuvastatin. DHE-associated oxidative stress and the expression of gp91-phox, a component of NADPH oxidase, were induced in ApoE−/− mice and were abolished by rosuvastatin treatment.Conclusion. Our data documented leukocyte recruitment prior to lipid accumulation and subsequent inhibition by rosuvastatin. The underlying mechanism seemed to involve oxidative stress and an anti-inflammatory effect on the endothelium of atheroprone vessels.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liyan Mei ◽  
Meihong He ◽  
Chaoying Zhang ◽  
Jifei Miao ◽  
Quan Wen ◽  
...  

AbstractSepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3′ untranslated region (3′-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1β and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-β is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-β expression. Positive mutual feedback between HMGB1 and IKK-β was observed when we silenced HMGB1 or IKK-β. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-β by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.


2020 ◽  
Vol 117 (26) ◽  
pp. 14769-14778 ◽  
Author(s):  
Jia Liu ◽  
Xinyuan Zhang ◽  
Yuxin Liu ◽  
Miguel Rodrigo ◽  
Patrick D. Loftus ◽  
...  

Electrophysiological mapping of chronic atrial fibrillation (AF) at high throughput and high resolution is critical for understanding its underlying mechanism and guiding definitive treatment such as cardiac ablation, but current electrophysiological tools are limited by either low spatial resolution or electromechanical uncoupling of the beating heart. To overcome this limitation, we herein introduce a scalable method for fabricating a tissue-like, high-density, fully elastic electrode (elastrode) array capable of achieving real-time, stable, cellular level-resolution electrophysiological mapping in vivo. Testing with acute rabbit and porcine models, the device is proven to have robust and intimate tissue coupling while maintaining its chemical, mechanical, and electrical properties during the cardiac cycle. The elastrode array records epicardial atrial signals with comparable efficacy to currently available endocardial-mapping techniques but with 2 times higher atrial-to-ventricular signal ratio and >100 times higher spatial resolution and can reliably identify electrical local heterogeneity within an area of simultaneously identified rotor-like electrical patterns in a porcine model of chronic AF.


1993 ◽  
Vol 178 (1) ◽  
pp. 175-185 ◽  
Author(s):  
L Wogensen ◽  
X Huang ◽  
N Sarvetnick

Transgenic expression of interleukin 10 (IL-10) in the islets of Langerhans leads to a pronounced pancreatic inflammation, without inflammation of the islets of Langerhans and without diabetes. A scattered infiltration of macrophages (M pi) precedes localized accumulations of CD4+ and CD8+ T lymphocytes, B lymphocytes, and M pi. This recruitment of inflammatory cells to the pancreas is somewhat surprising, since the biological activities of IL-10 in vitro indicate that IL-10 is a powerful immunosuppressive cytokine. Since endothelial cells play a major role in leukocyte extravasation, we examined if vascular changes and extralymphoid induction of peripheral and mucosal type vascular addressins contributed to IL-10-induced homing of mononuclear cells to the pancreas. The endothelium lining small vessels was highly activated in areas of inflammation, as the endothelial cells became cuboidal, and exhibited increased expression of major histocompatibility complex class II (Ia), intercellular adhesion molecule 1, and von Willebrand Factor. Furthermore, induction of vascular addressins simultaneously with accumulation of mononuclear cells around islets and vessels indicated that the endothelial cells take on the phenotype of differentiated endothelium specialized for leukocyte extravasation. In conclusion, pancreatic inflammation and vascular changes are prominent in IL-10 transgenic mice. We hypothesize that IL-10, in addition to its immuno-inhibitory properties, is a potent recruitment signal for leukocyte migration in vivo. These effects are relevant for in vivo therapeutic applications of IL-10.


2010 ◽  
Vol 76 (24) ◽  
pp. 8259-8264 ◽  
Author(s):  
Benoît Foligné ◽  
Stéphanie-Marie Deutsch ◽  
Jérôme Breton ◽  
Fabien J. Cousin ◽  
Joëlle Dewulf ◽  
...  

ABSTRACT Immunomodulatory properties of 10 dairy propionibacteria, analyzed on human peripheral blood mononuclear cells (PBMCs), revealed a highly strain-dependent induction of anti-inflammatory cytokine interleukin 10 (IL-10). Two selected strains of Propionibacterium freudenreichii showed a protective effect against two models of colitis in mice, suggesting a probiotic potential predicted by immune-based selection criteria for these cheese starter bacteria.


Pharmacology ◽  
2017 ◽  
Vol 101 (1-2) ◽  
pp. 35-42 ◽  
Author(s):  
Vanessa Mateus ◽  
João Rocha ◽  
Paula Alves ◽  
Hélder Mota-Filipe ◽  
Bruno Sepodes ◽  
...  

Thiadiazolidinone-8 (TDZD-8) is an effective thiadiazolidinone derivate that is able to suppress the expression of inflammatory cytokines; it also presents tissue protective actions by glycogen synthase kinase (GSK)-3β inhibition, promoting thus an anti-inflammatory effect. Since inflammatory bowel disease is a chronic disease with reduced quality of life, where currently available therapies are only able to induce or maintain the patient in remission, it is crucial to investigate new pharmacological approaches. The main objective of this study was to evaluate the effect of TDZD-8 in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Male CD-1 mice with TNBS-induced colitis were treated with a daily dose of TDZD-8 5 mg/kg/day IP during 4 days. The anti-inflammatory properties of TDZD-8 in the TNBS-induced colitis were confirmed by suppression of pro-inflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and myeloperoxidase, as well as by the significant increase of the anti-inflammatory cytokine, IL-10. These treated mice also presented a reduction in fecal hemoglobin and alkaline phosphatase, suggesting a beneficial effect of TDZD-8. Furthermore, renal and hepatic biomarkers remained stabilized after treatment. In conclusion, TDZD-8 reduces the inflammatory response associated with TNBS-induced colitis in mice, and modulation of GSK-3β seems to be an interesting pharmacological target in colitis.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2173
Author(s):  
Yubao Wang ◽  
Pei Yu ◽  
Yi Li ◽  
Zhan Zhao ◽  
Xiaomei Wu ◽  
...  

Anti-inflammatory cytokine interleukin (IL)-10 is pivotal for limiting excessive inflammation in the central nervous system. Reports show that lipopolysaccharide (LPS)-induced microglial IL-10 emerges in a delayed manner in vitro and in vivo, lagging behind proinflammatory cytokines to facilitate the resolution of neuroinflammation. We hypothesized that IL-10 releases quite quickly based on our pilot investigation. Here, we uncovered a bimodal expression of microglial IL-10 gene transcription induced by LPS in mouse primary mixed glial cultures. This pattern consisted of a short brief early-phase and a long-lived late-phase, enabling the production of IL-10 protein in a rapid manner. The removal and addition of IL-10 protein assays indicated that early-released IL-10 exerted potent modulatory effects on neuroinflammation at picomolar levels, and IL-10 released at the onset of neuroinflammation is tightly controlled. We further showed that the early-released, but not the late-released, IL-10 was crucial for mediating and potentiating the anti-inflammatory function of a β2-adrenergic receptor agonist salmeterol. This study in vitro highlights the essential role of early-released IL-10 in regulating the appropriate degree of neuroinflammation, overturning the previous notion that microglial IL-10 produces and functions in a delayed manner and providing new insights into anti-inflammatory mechanisms-mediated neuroimmune homeostasis.


Sign in / Sign up

Export Citation Format

Share Document