scholarly journals Editorial: Human Milk Composition and Health Outcomes in Children

2019 ◽  
Vol 7 ◽  
Author(s):  
Daniel Munblit ◽  
Valerie Verhasselt ◽  
John O. Warner
Author(s):  
Syaza Y. Binte Abu Bakar ◽  
Malinda Salim ◽  
Andrew J. Clulow ◽  
Kevin Nicholas ◽  
Ben J. Boyd
Keyword(s):  

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2009
Author(s):  
Joris H.J. van Sadelhoff ◽  
Linda P. Siziba ◽  
Lisa Buchenauer ◽  
Marko Mank ◽  
Selma P. Wiertsema ◽  
...  

Free amino acids (FAAs) are important regulators of key pathways necessary for growth, development, and immunity. Data on FAAs in human milk (HM) and their roles in infant development are limited. We investigated the levels of FAAs and total amino acids (TAA, i.e., the sum of conjugated amino acids and FAAs) in HM in relation to infant and maternal characteristics and immunological conditions. FAA and TAA levels in HM sampled at 6 weeks (n = 671) and 6 months (n = 441) of lactation were determined using high-performance liquid chromatography. Child growth was ascertained at 4–5 weeks and at 6–7 months of age. Child allergy and lower respiratory tract infections were assessed in the first years of life. Associations of amino acid (AA) levels in HM with child growth and health outcomes were determined by Spearman correlation and modified Poisson regression, respectively. Free glutamine, glutamate, and serine in 6-week HM positively correlated with infant weight gain in the first 4–5 weeks of age. Maternal pre-pregnancy weight and body mass index (BMI) were negatively correlated with free glutamine and asparagine in 6-week and 6-month HM and positively correlated with the sum of TAAs in 6-month HM, but significance was lost following confounder adjustment. Free glutamine was lower in 6-month HM of mothers with an allergy (either active or non-active). No consistent associations were found between FAAs in HM and child health outcomes. However, potential negative associations were observed between specific FAAs and the risk of food allergy. These results suggest that specific FAAs play a role in infant growth. Moreover, these findings warrant further investigations into the relation of FAAs in HM with infant health outcomes and maternal allergy.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Diana Escuder-Vieco ◽  
Juan M. Rodríguez ◽  
Irene Espinosa-Martos ◽  
Nieves Corzo ◽  
Antonia Montilla ◽  
...  

Holder pasteurization (HoP; 62.5 °C, 30 min) is commonly used to ensure the microbiological safety of donor human milk (DHM) but diminishes its nutritional properties. A high-temperature short-time (HTST) system was designed as an alternative for human milk banks. The objective of this study was to evaluate the effect of this HTST system on different nutrients and the bile salt stimulated lipase (BSSL) activity of DHM. DHM was processed in the HTST system and by standard HoP. Macronutrients were measured with a mid-infrared analyzer. Lactose, glucose, myo-inositol, vitamins and lipids were assayed using chromatographic techniques. BSSL activity was determined using a kit. The duration of HTST treatment had a greater influence on the nutrient composition of DHM than did the tested temperature. The lactose concentration and the percentage of phospholipids and PUFAs were higher in HTST-treated than in raw DHM, while the fat concentration and the percentage of monoacylglycerides and SFAs were lower. Other nutrients did not change after HTST processing. The retained BSSL activity was higher after short HTST treatment than that following HoP. Overall, HTST treatment resulted in better preservation of the nutritional quality of DHM than HoP because relevant thermosensitive components (phospholipids, PUFAs, and BSSL) were less affected.


Author(s):  
Parul Christian ◽  
Emily R Smith ◽  
Sun Eun Lee ◽  
Ashley J Vargas ◽  
Andrew A Bremer ◽  
...  

ABSTRACT Critical advancement is needed in the study of human milk as a biological system that intersects and interacts with myriad internal (maternal biology) and external (diet, environment, infections) factors and its plethora of influences on the developing infant. Human-milk composition and its resulting biological function is more than the sum of its parts. Our failure to fully understand this biology in a large part contributes to why the duration of exclusive breastfeeding remains an unsettled science (if not policy). Our current understanding of human-milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation. The overly simplistic, but common, approach to analyzing single, mostly nutritive components of human milk is insufficient to understand the contribution of either individual components or the matrix within which they exist to both maternal and child health. There is a need for a shift in the conceptual approach to studying human milk to improve strategies and interventions to support better lactation, breastfeeding, and the full range of infant feeding practices, particularly for women and infants living in undernourished and infectious environments. Recent technological advances have led to a rising movement towards advancing the science of human-milk biology. Herein, we describe the rationale and critical need for unveiling the multifunctionality of the various nutritional, nonnutritional, immune, and biological signaling pathways of the components in human milk that drive system development and maturation, growth, and development in the very early postnatal period of life. We provide a vision and conceptual framework for a research strategy and agenda to change the field of human-milk biology with implications for global policy, innovation, and interventions.


Author(s):  
Manuela Cardoso ◽  
Daniel Virella ◽  
Israel Macedo ◽  
Diana Silva ◽  
Luís Pereira-da-Silva

Adequate nutrition of very preterm infants comprises fortification of human milk (HM), which helps to improve their nutrition and health. Standard HM fortification involves a fixed dose of a multi-nutrient HM fortifier, regardless of the composition of HM. This fortification method requires regular measurements of HM composition and has been suggested to be a more accurate fortification method. This observational study protocol is designed to assess whether the target HM fortification method (contemporary cohort) improves the energy and macronutrient intakes and the quality of growth of very preterm infants, compared with the previously used standard HM fortification (historical cohorts). In the contemporary cohort, a HM multi-nutrient fortifier and modular supplements of protein and fat are used for HM fortification, and the enteral nutrition recommendations of the European Society for Paediatric Gastroenterology Hepatology and Nutrition for preterm infants will be considered. For both cohorts, the composition of HM is assessed using the Miris Human Milk analyzer (Uppsala, Sweden). The quality of growth will be assessed by in-hospital weight, length, and head circumference growth velocities and a single measurement of adiposity (fat mass percentage and fat mass index) performed just after discharge, using the air displacement plethysmography method (Pea Pod, Cosmed, Italy). ClinicalTrials.gov registration number: NCT04400396.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 486 ◽  
Author(s):  
Elvira Verduci ◽  
Maria Lorella Giannì ◽  
Giulia Vizzari ◽  
Sara Vizzuso ◽  
Jacopo Cerasani ◽  
...  

The benefits of human milk for both mother and infant are widely acknowledged. Human milk could represent a link between maternal and offspring health. The triad mother-breast milk-infant is an interconnected system in which maternal diet and lifestyle might have effects on infant’s health outcome. This link could be in part explained by epigenetics, even if the underlining mechanisms have not been fully clarified yet. The aim of this paper is to update the association between maternal diet and human milk, pointing out how maternal diet and lifestyle could be associated with breast-milk composition, hence with offspring’s health outcome.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1231 ◽  
Author(s):  
Christine Butts ◽  
Duncan Hedderley ◽  
Thanuja Herath ◽  
Gunaranjan Paturi ◽  
Sarah Glyn-Jones ◽  
...  

Human milk is nutrient rich, complex in its composition, and is key to a baby’s health through its role in nutrition, gastrointestinal tract and immune development. Seventy-eight mothers (19–42 years of age) of Asian, Māori, Pacific Island, or of European ethnicity living in Manawatu-Wanganui, New Zealand (NZ) completed the study. The women provided three breast milk samples over a one-week period (6–8 weeks postpartum), completed a three-day food diary and provided information regarding their pregnancy and lactation experiences. The breast milk samples were analyzed for protein, fat, fatty acid profile, ash, selected minerals (calcium, magnesium, selenium, zinc), and carbohydrates. Breast milk nutrient profiles showed no significant differences between the mothers of different ethnicities in their macronutrient (protein, fat, carbohydrate, and moisture) content. The breast milk of Asian mothers contained significantly higher levels of polyunsaturated fatty acids (PUFAs), omega-3 (n-3) and omega-6 (n-6) fatty acids, docosahexaenoic acid (DHA), and linoleic acids. Arachidonic acid was significantly lower in the breast milk of Māori and Pacific Island women. Dietary intakes of protein, total energy, saturated and polyunsaturated fat, calcium, phosphorus, zinc, iodine, vitamin A equivalents, and folate differed between the ethnic groups, as well as the number of serves of dairy foods, chicken, and legumes. No strong correlations between dietary nutrients and breast milk components were found.


2020 ◽  
Author(s):  
Sharon Donovan ◽  
Kathryn Dewey ◽  
Rachel Novotny ◽  
Jamie Stang ◽  
Elsie Taveras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document