scholarly journals Extracellular Vesicles for the Treatment of Radiation Injuries

2021 ◽  
Vol 12 ◽  
Author(s):  
Lalitha Sarad Yamini Nanduri ◽  
Phaneendra K. Duddempudi ◽  
Weng-Lang Yang ◽  
Radia Tamarat ◽  
Chandan Guha

Normal tissue injury from accidental or therapeutic exposure to high-dose radiation can cause severe acute and delayed toxicities, which result in mortality and chronic morbidity. Exposure to single high-dose radiation leads to a multi-organ failure, known as acute radiation syndrome, which is caused by radiation-induced oxidative stress and DNA damage to tissue stem cells. The radiation exposure results in acute cell loss, cell cycle arrest, senescence, and early damage to bone marrow and intestine with high mortality from sepsis. There is an urgent need for developing medical countermeasures against radiation injury for normal tissue toxicity. In this review, we discuss the potential of applying secretory extracellular vesicles derived from mesenchymal stromal/stem cells, endothelial cells, and macrophages for promoting repair and regeneration of organs after radiation injury.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 612-612 ◽  
Author(s):  
Hui Yu ◽  
Hongmei Shen ◽  
Feng Xu ◽  
Xiaoxia Hu ◽  
Yanxin Li ◽  
...  

Abstract Radiation injury remains a significant health problem. New medical intervention to prevent or manage radiation damage is highly dependent on a deeper understanding of how radiation-induced cell death is accomplished in the irradiated tissue cells such as stem and progenitor cells. To date, relatively specific or untainted molecular mediators in apoptosis of tissue stem and progenitor cells upon radiation injury have not been clearly defined. The p53 pathway is known as a major molecular mechanism for cell apoptosis, upon the exposure of lethal radiation. Targeting p53 confers a radioprotective effect, but may increase tumorigenesis due to impaired cell cycle arrest for DNA repair. In our current study, we have examined the specific role of PUMA (p53 up-regulated mediator of apoptosis) in the radiosensitivity of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). By quantitative RT PCR, we found that the level of PUMA mRNA was relatively low in the most primitive long-term repopulating hematopoietic stem cells (LT-HSC, isolated based on the immnunophenotype “CD34−LKS”) as compared to other hematopoietic cell populations from mice, but it was significantly elevated in response to γ-irradiation. In the mice lacking PUMA, while neither HSC number nor HSC function was altered under homeostatic conditions, the PUMA−/− HSCs appeared to be resistant to radiation damage in vivo as retrospectively quantified in a competitive HSC transplant model. Our further direct measurement with a single cell culture system for HSC growth in vitro, demonstrated that PUMA, but not p21 (the chief mediator of p53 in cell cycle arrest), is primarily responsible for the radiosensitivity of HSC in the p53 pathway (200 LT-HSCs analyzed for each cell type). Together, these data provide definitive evidence for PUMA as an essential mediator in radiation-induced apoptosis of tissue stem cells. We finally focused on the beneficial effects of targeting PUMA in HSCs and HPCs on the animal survival upon the exposure of lethal irradiation. Strikingly, the wild-type mice reconstituted with PUMA−/− hematopoietic cells exhibited a significant survival advantage after two rounds of 9-Gy γ-irradiation (18 Gy in total) as compared to the mice reconstituted with PUMA+/+ hematopoietic cells (95 % vs. 0 % survival in 20 days, n=21/each group; 50% vs. 0 % survival in 180 days, n=20 or 11/each group, respectively) as shown in the figure below. Moreover, unlike the p53−/− mice, those PUMA−/− reconstituted mice did not have an increased incidence of hematopoietic malignancies (n=20) within 180 days. Therefore, our current study establishes PUMA as an attractive molecular target for the development of therapeutic agents for the prevention and treatment of radiation injury.


Author(s):  
Ning J. Yue ◽  
Kent Lambert ◽  
Jay E. Reiff ◽  
Anthony E. Dragun ◽  
Ning J. Yue ◽  
...  

2004 ◽  
Vol 18 (6) ◽  
pp. 617-621 ◽  
Author(s):  
SN Shenoy ◽  
KG Munish ◽  
A Raja

Nukleonika ◽  
2014 ◽  
Vol 59 (1) ◽  
pp. 9-13
Author(s):  
Ahmed M. Maghraby ◽  
A. Mansour ◽  
A. A. Abdel-Fattah

Abstract Taurine/EPR rods (3 × 10 mm) have been prepared by a simple technique in the laboratory where taurine powder was mixed with a molten mixture of paraffin wax and an ethylene vinyl acetate (EVA) copolymer. The binding mixture EVA/Paraffin does not present interference or noise in the EPR signal before or after irradiation. The rods show good mechanical properties for safe and multi-use handling. An EPR investigation of radiation induced radicals in taurine rods revealed that there are two types of radicals produced after exposure to gamma radiation (60Co). EPR spectra were recorded and analyzed - also the microwave power saturation and modulation amplitude were studied and optimized. Response of taurine to different radiation doses (1.5-100 kGy) was studied and found to follow a linear relationship up to 100 kGy. Radiation induced radicals in taurine persists and showed a noticeable stability over 94 days following irradiation. Uncertainities associated with the evaluation of radiation doses using taurine dosimeters were discussed and tabulated. It was found that taurine possesses good dosimetric properties using EPR spectroscopy in high doses in addition to its simple spectrum.


2013 ◽  
Vol 18 (5) ◽  
pp. 430-435 ◽  
Author(s):  
Ameen Al-Omair ◽  
Roger Smith ◽  
Tim-Rasmus Kiehl ◽  
Louis Lao ◽  
Eugene Yu ◽  
...  

Spine stereotactic radiosurgery (SRS) is increasingly being used to treat metastatic spinal tumors. As the experience matures, high rates of vertebral compression fracture (VCF) are being observed. What is unknown is the mechanism of action; it has been postulated but not confirmed that radiation itself is a contributing factor. This case report describes 2 patients who were treated with spine SRS who subsequently developed signal changes on MRI consistent with tumor progression and VCF; however, biopsy confirmed a diagnosis of radiation-induced necrosis in 1 patient and fibrosis in the other. Radionecrosis is a rare and serious side effect of high-dose radiation therapy and represents a diagnostic challenge, as the authors have learned from years of experience with brain SRS. These cases highlight the issues in the new era of spine SRS with respect to relying on imaging alone as a means of determining true tumor progression. In those scenarios in which it is unclear based on imaging if true tumor progression has occurred, the authors recommend biopsy to rule out radiation-induced effects within the bone prior to initiating salvage therapies.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Wei Yang ◽  
Zenghe Xiu ◽  
Yuping He ◽  
Wenpeng Huang ◽  
Yanyan Li ◽  
...  

Abstract Tumor regression in sites distant to the irradiated field are thought to be associated with emission of damage-associated molecular patterns (DAMPs) molecules and generation of immunogenic cell death (ICD). Glioma stem cells (GSCs) are resistant to high doses of radiation, and ultimately select the outgrowth of a more aggressive tumor. This study showed high-dose IR triggered fewer DAMPs molecules exposure and release in GSCs comparing to matched non-GSCs. Downregulation of binding immunoglobulin protein (Bip) promoted IR-mediated endoplasmic reticulum stress to generate DAMPs molecules by PERK and IRE1-α phosphorylation, and increased dendritic cells mature and effector T lymphocytes activation. GSCs treated with Bip knockdown and IR efficiently prevented tumor generation, and reduced post-radiotherapy tumor recurrence. These data suggest that Bip plays a critical role in inhibition of IR-induced ICD in GSCs, and Bip inhibition may be a promising strategy on adjuvant therapy by ameliorating tumor immune microenvironment.


Sign in / Sign up

Export Citation Format

Share Document