scholarly journals Antitumor Effects of Carvacrol and Thymol: A Systematic Review

2021 ◽  
Vol 12 ◽  
Author(s):  
Laeza Alves Sampaio ◽  
Lícia Tairiny Santos Pina ◽  
Mairim Russo Serafini ◽  
Débora dos Santos Tavares ◽  
Adriana Gibara Guimarães

Background: It is estimated that one in five people worldwide faces a diagnosis of a malignant neoplasm during their lifetime. Carvacrol and its isomer, thymol, are natural compounds that act against several diseases, including cancer. Thus, this systematic review aimed to examine and synthesize the knowledge on the antitumor effects of carvacrol and thymol.Methods: A systematic literature search was carried out in the PubMed, Web of Science, Scopus and Lilacs databases in April 2020 (updated in March 2021) based on the PRISMA 2020 guidelines. The following combination of health descriptors, MeSH terms and their synonyms were used: carvacrol, thymol, antitumor, antineoplastic, anticancer, cytotoxicity, apoptosis, cell proliferation, in vitro and in vivo. To assess the risk of bias in in vivo studies, the SYRCLE Risk of Bias tool was used, and for in vitro studies, a modified version was used.Results: A total of 1,170 records were identified, with 77 meeting the established criteria. The studies were published between 2003 and 2021, with 69 being in vitro and 10 in vivo. Forty-three used carvacrol, 19 thymol, and 15 studies tested both monoterpenes. It was attested that carvacrol and thymol induced apoptosis, cytotoxicity, cell cycle arrest, antimetastatic activity, and also displayed different antiproliferative effects and inhibition of signaling pathways (MAPKs and PI3K/AKT/mTOR).Conclusions: Carvacrol and thymol exhibited antitumor and antiproliferative activity through several signaling pathways. In vitro, carvacrol appears to be more potent than thymol. However, further in vivo studies with robust methodology are required to define a standard and safe dose, determine their toxic or side effects, and clarify its exact mechanisms of action.This systematic review was registered in the PROSPERO database (CRD42020176736) and the protocol is available at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176736.

2019 ◽  
Vol 24 (40) ◽  
pp. 4779-4793 ◽  
Author(s):  
Paulo M.P. Ferreira ◽  
Lays A.R.L. Rodrigues ◽  
Lunna Paula de Alencar Carnib ◽  
Paulo Víctor de Lima Sousa ◽  
Luis Michel Nolasco Lugo ◽  
...  

Background: Sulforaphane (SF, 1-isothiocyanato-4-(methyl-sulfinyl)-butane) is found in broccoli, cabbage and cauliflower. Methods: we performed a critical review on the antioxidative, chemopreventive and antitumor effects of SF from cruciferous vegetables against prostate cancers and molecular pathways. For a complete and reliable review, primary and secondary resources were used, including original and review articles, books and government documents published until March 2018. Articles that are in duplicity and disconnected are not considered for review. SF is derived from glucoraphanin (4-methyl-sulfinyl-butyl-glucosinate), being one of the most commonly found isothiocyanates in vegetables from Brassica spp., especially in broccoli samples. In vitro studies indicate that SF induces apoptosis in a dependent or non-dependent method of androgens by transcription of tumor suppressor genes, oxidation response and higher expression of phase II enzymes in prostate cancer cells. Sulforaphane also decreases transcription of the nuclear factor kB and antiapoptotic proteins, expression of cyclin D2 and survivin and DNA synthesis, increases Nrf2 gene activity, interferes with genome compacting by inhibition of histone deacetylases and disrupts Hsp90 complexes, which cause cell cycle arrest, mitosis interruption, activation of caspases and mitochondria depolarization. Conclusion: SF and cruciferous vegetables play antioxidative and chemopreventive role, delaying or blocking in vivo carcinogenesis, causing biochemical and epigenetic changes, preventing, delaying, or reversing preneoplastic or advanced prostate lesions, and frequently activating tumor cell death by intrinsic methods of apoptosis. These outcomes encourage the consumption of Brassica specimens, which could be easily achieved by the incorporation of food and vegetables rich in cruciferous isothiocyanates in the diet.


2017 ◽  
Vol 376 ◽  
pp. 12-28 ◽  
Author(s):  
Sanda Mihaela Popescu ◽  
Horia Octavian Manolea ◽  
Oana Andreea Diaconu ◽  
Veronica Mercuţ ◽  
Monica Scrieciu ◽  
...  

Zirconia is a metal used in dental implantology. Its biocompatibility was studied in vitro and in vivo, results of the studies being analyzed in reviews and meta analyses. The aim of this systematic review was to evaluate biocompatibility of zirconia in animal studies in vivo expressed as results of histomorphometric tests. Databases were searched from 1980 until February 2016, with different combination of the following MeSH terms: zirconium, biocompatibility, dental implants, in vivo, animal studies. Letters to the editors, case reports, commentaries, review articles and articles published in other languages then English were excluded. The search of PubMed, ScienceDirect and Google Scholar databases yielded 690 titles. After abstract screening and duplicate discarding 50 articles were identified and finally, 40 were included in the review. Most of the studies compared zirconia with titanium, a well established material for dental implants. In majority of the studies zirconia showed a similar osseointegration with titanium. Surface implant treatments, like sandblasted and etched zirconia (ZrO2-SLA), alumina toughed zirconia (ATZ), and powder injection molding (PIM) were used to improve osseointegration of zirconia with good results. In the light of histomorphometric test, zirconia, no matter physical and structural forms tested, is a biocompatible material.


2020 ◽  
Vol 48 (01) ◽  
pp. 161-182 ◽  
Author(s):  
Jihan Huang ◽  
Wei Guo ◽  
Fan Cheung ◽  
Hor-Yue Tan ◽  
Ning Wang ◽  
...  

Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its “multi-components” and “multi-targets” manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb–compound, compound–protein, protein–pathway, and gene–disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.


Blood ◽  
2009 ◽  
Vol 114 (9) ◽  
pp. 1987-1998 ◽  
Author(s):  
Tong-Young Lee ◽  
Stefan Muschal ◽  
Elke A. Pravda ◽  
Judah Folkman ◽  
Amir Abdollahi ◽  
...  

Angiostatin, a proteolytic fragment of plasminogen, is a potent endogenous antiangiogenic agent. The molecular mechanisms governing angiostatin's antiangiogenic and antitumor effects are not well understood. Here, we report the identification of mitochondrial compartment as the ultimate target of angiostatin. After internalization of angiostatin into the cell, at least 2 proteins within the mitochondria bind this molecule: malate dehydrogenase, a member of Krebs cycle, and adenosine triphosphate synthase. In vitro and in vivo studies revealed differential regulation of key prosurvival and angiogenesis-related proteins in angiostatin-treated tumors and tumor-endothelium. Angiostatin induced apoptosis via down-regulation of mitochondrial BCL-2. Angiostatin treatment led to down-regulation of c-Myc and elevated levels of another key antiangiogenic protein, thrombospondin-1, reinforcing its antitumor and antiangiogenic effects. Further evidence is provided for reduced recruitment and infiltration of bone marrow–derived macrophages in angiostatin-treated tumors. The observed effects of angiostatin were restricted to the tumor site and were not observed in other major organs of the mice, indicating unique tumor specific bioavailability. Together, our data suggest mitochondria as a novel target for antiangiogenic therapy and provide mechanistic insights to the antiangiogenic and antitumor effects of angiostatin.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Yun Huang ◽  
Chen Liu ◽  
Wu-Cha Zeng ◽  
Guo-Yan Xu ◽  
Jian-Min Wu ◽  
...  

Abstract The overall survival rate of patients with hepatocellular carcinoma (HCC) has remained unchanged over the last several decades. Therefore, novel drugs and therapies are required for HCC treatment. Isoliquiritigenin (ISL), a natural flavonoid predominantly isolated from the traditional Chinese medicine Glycyrrhizae Radix (Licorice), has a high anticancer potential and broad application value in various cancers. Here, we aimed to investigate the anticancer role of ISL in the HCC cell line Hep3B. Functional analysis revealed that ISL inhibited the proliferation of Hep3B cells by causing G1/S cell cycle arrest in vitro. Meanwhile, the inhibitory effect of ISL on proliferation was also observed in vivo. Further analysis revealed that ISL could suppress the migration and metastasis of Hep3B cells in vitro and in vivo. Mechanistic analysis revealed that ISL inhibited cyclin D1 and up-regulated the proteins P21, P27 that negatively regulate the cell cycle. Furthermore, ISL induced apoptosis while inhibiting cell cycle transition. In addition, phosphatidylinositol 3′-kinase/protein kinase B (PI3K/AKT) signal pathway was suppressed by ISL treatment, and the epithelial marker E-cadherin was up-regulated when the mesenchymal markers Vimentin and N-cadherin were down-regulated. In brief, our findings suggest that ISL could be a promising agent for preventing HCC tumorigenesis and metastasis.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
David Tsuyoshi Hiramatsu Castro ◽  
Jaqueline Ferreira Campos ◽  
Marcio José Damião ◽  
Heron Fernandes Vieira Torquato ◽  
Edgar Julian Paredes-Gamero ◽  
...  

Cutaneous melanoma is among the most aggressive types of cancer, and its rate of occurrence increases every year. Current pharmacological treatments for melanoma are not completely effective, requiring the identification of new drugs. As an alternative, plant-derived natural compounds are described as promising sources of new anticancer drugs. In this context, the objectives of this study were to identify the chemical composition of the ethanolic extract of Senna velutina roots (ESVR), to assess its in vitro and in vivo antitumor effects on melanoma cells, and to characterize its mechanisms of action. For these purposes, the chemical constituents were identified by liquid chromatography coupled to high-resolution mass spectrometry. The in vitro activity of the extract was assessed in the B16F10-Nex2 melanoma cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and based on the apoptotic cell count; DNA fragmentation; necrostatin-1 inhibition; intracellular calcium, pan-caspase, and caspase-3 activation; reactive oxygen species (ROS) levels; and cell cycle arrest. The in vivo activity of the extract was assessed in models of tumor volume progression and pulmonary nodule formation in C57Bl/6 mice. The chemical composition results showed that ESVR contains flavonoid derivatives of the catechin, anthraquinone, and piceatannol groups. The extract reduced B16F10-Nex2 cell viability and promoted apoptotic cell death as well as caspase-3 activation, with increased intracellular calcium and ROS levels as well as cell cycle arrest at the sub-G0/G1 phase. In vivo, the tumor volume progression and pulmonary metastasis of ESVR-treated mice decreased over 50%. Combined, these results show that ESVR had in vitro and in vivo antitumor effects, predominantly by apoptosis, thus demonstrating its potential as a therapeutic agent in the treatment of melanoma and other types of cancer.


2020 ◽  
Vol 26 ◽  
Author(s):  
Juliana de Vasconcelos Cerqueira Braz ◽  
Fernanda Oliveira de Carvalho ◽  
Daniele de Vasconcelos Cerqueira Meneses ◽  
Fernanda Araújo Felipe Calixto ◽  
Hericalizandra Santa Rosa Santana ◽  
...  

Background: Cancer is a complex, multifactorial disease, and a major public health problem, as it is a leading cause of morbidity and mortality worldwide. Although treatments have significantly improved, there is a still a search for more effective drugs. One source for these are natural products (NPs). One NP that has shown anticancer activity is Limonene. However, the mechanisms of limonene's antiproliferative, anticancer and antineoplastic activity are not fully understood. Objective: The objective of this study is, therefore, to undertake a systematic review and meta-analysis of the literature on this subject. Methods: A comprehensive literature search was performed using the Scopus, MEDLINE-PubMed, Web of Science, and Science Direct databases using the keywords: "limonene", “cancer”, “neoplasm”, “tumor”. The inclusion criteria were: in vivo and in vitro studies on the use of limonene in cancer published in English, Portuguese and Spanish until December 2019. Review articles, meta-analyses, abstracts, conference papers, editorials/letters and case reports were excluded. Results: The search identified 3568 articles. Of which 126 were selected for full reading with 11 papers meeting the review criteria. Six more papers were added from the references of the initial 11 texts, giving a total of 17 papers. There was a high level of agreement on inclusion/exclusion (Kappa index > 80%). Risk of bias I the texts was shown to be high. Conclusion: The meta-analysis suggests that limonene acts mainly on tumor regression induced apoptosis, and is a promising natural product for use in the treatment of several types of cancer.


Oncotarget ◽  
2016 ◽  
Vol 7 (16) ◽  
pp. 22409-22426 ◽  
Author(s):  
You-Cheng Hseu ◽  
Varadharajan Thiyagarajan ◽  
Hsiao-Tung Tsou ◽  
Kai-Yuan Lin ◽  
Hui-Jye Chen ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Anne Dietz ◽  
Maria Gomolka ◽  
Simone Moertl ◽  
Prabal Subedi

Background: Radiosensitivity is a significantly enhanced reaction of cells, tissues, organs or organisms to ionizing radiation (IR). During radiotherapy, surrounding normal tissue radiosensitivity often limits the radiation dose that can be applied to the tumour, resulting in suboptimal tumour control or adverse effects on the life quality of survivors. Predicting radiosensitivity is a component of personalized medicine, which will help medical professionals allocate radiation therapy decisions for effective tumour treatment. So far, there are no reviews of the current literature that explore the relationship between proteomic changes after IR exposure and normal tissue radiosensitivity systematically. Objectives: The main objective of this protocol is to specify the search and evaluation strategy for a forthcoming systematic review (SR) dealing with the effects of in vivo and in vitro IR exposure on the proteome of human normal tissue with focus on radiosensitivity. Methods: The SR framework has been developed following the guidelines established in the National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT) Handbook for Conducting a Literature-Based Health Assessment, which provides a standardised methodology to implement the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to environmental health assessments. The protocol will be registered in PROSPERO, an open source protocol registration system, to guarantee transparency. Eligibility criteria: Only experimental studies, in vivo and in vitro, investigating effects of ionizing radiation on the proteome of human normal tissue correlated with radio sensitivity will be included. Eligible studies will include English peer reviewed articles with publication dates from 2011–2020 which are sources of primary data. Information sources: The search strings will be applied to the scientific literature databases PubMed and Web of Science. The reference lists of included studies will also be manually searched. Data extraction and results: Data will be extracted according to a pre-defined modality and compiled in a narrative report following guidelines presented as a “Synthesis without Meta-analyses” method. Risk of bias: The risk of bias will be assessed based on the NTP/OHAT risk of bias rating tool for human and animal studies (OHAT 2019). Level of evidence rating: A comprehensive assessment of the quality of evidence for both in vivo and in vitro studies will be followed, by assigning a confidence rating to the literature. This is followed by translation into a rating on the level of evidence (high, moderate, low, or inadequate) regarding the research question. Registration: PROSPERO Submission ID 220064.


Sign in / Sign up

Export Citation Format

Share Document