scholarly journals Trimetazidine Attenuates Heart Failure by Improving Myocardial Metabolism via AMPK

2021 ◽  
Vol 12 ◽  
Author(s):  
Hongyang Shu ◽  
Weijian Hang ◽  
Yizhong Peng ◽  
Jiali Nie ◽  
Lujin Wu ◽  
...  

Energic deficiency of cardiomyocytes is a dominant cause of heart failure. An antianginal agent, trimetazidine improves the myocardial energetic supply. We presumed that trimetazidine protects the cardiomyocytes from the pressure overload-induced heart failure through improving the myocardial metabolism. C57BL/6 mice were subjected to transverse aortic constriction (TAC). After 4 weeks of TAC, heart failure was observed in mice manifested by an increased left ventricular (LV) chamber dimension, an impaired LV ejection fraction evaluated by echocardiography analysis, which were significantly restrained by the treatment of trimetazidine. Trimetazidine restored the mitochondrial morphology and function tested by cardiac transmission electron microscope and mitochondrial dynamic proteins analysis. Positron emission tomography showed that trimetazidine significantly elevated the glucose uptake in TAC mouse heart. Trimetazidine restrained the impairments of the insulin signaling in TAC mice and promoted the translocation of glucose transporter type IV (GLUT4) from the storage vesicle to membrane. However, these cardioprotective effects of trimetazidine in TAC mice were notably abolished by compound C (C.C), a specific AMPK inhibitor. The enlargement of neonatal rat cardiomyocyte induced by mechanical stretch, together with the increased expression of hypertrophy-associated proteins, mitochondria deformation and dysfunction were significantly ameliorated by trimetazidine. Trimetazidine enhanced the isolated cardiomyocyte glucose uptake in vitro. These benefits brought by trimetazidine were also removed with the presence of C.C. In conclusion, trimetazidine attenuated pressure overload-induced heart failure through improving myocardial mitochondrial function and glucose uptake via AMPK.

Author(s):  
Mortimer Korf-Klingebiel ◽  
Marc R. Reboll ◽  
Felix Polten ◽  
Natalie Weber ◽  
Felix Jäckle ◽  
...  

Background: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete myeloid-derived growth factor (MYDGF) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. Methods: We defined the cellular sources and function of MYDGF in wild-type, Mydgf -deficient ( Mydgf -/- ), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca 2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. Results: MYDGF protein abundance increased in the left ventricular (LV) myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf -/- mice had no apparent phenotype at baseline, they developed more severe LV hypertrophy and contractile dysfunction during pressure overload than wild-type mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein coupled receptor agonist-induced hypertrophy and augmented sarco/endoplasmic reticulum Ca 2+ ATPase 2a (SERCA2a) expression in cultured neonatal rat cardiomyocytes by enhancing PIM1 serine/threonine kinase expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf -/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca 2+ cycling and sarcomere function compared to cardiomyocytes from pressure-overloaded wild-type mice. Transplanting Mydgf -/- mice with wild-type bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf -/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded wild-type mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated LV hypertrophy and dysfunction, and improved survival. Conclusions: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Rangarajan Nadadur ◽  
Salil Sharma ◽  
Jingyuan Li ◽  
Mansoureh Eghbali

Heart failure is generally characterized by increased fibrosis and inflammation, which leads to functional and contractile defects. We have previously shown that short-term estrogen (E2) treatment can rescue pressure overload-induced decompensated heart failure (HF) in mice. Here, we investigate the anti-inflammatory and anti-fibrotic effects of E2 on reversing the adverse remodeling of the left ventricle which occurs during the progression to heart failure. Trans-aortic constriction procedure was used to induce HF. Once the ejection fraction reached ∼30%, one group of mice was sacrificed and the other group was treated with E2 (30 αg/kg/day) for 10 days. In vitro, co-cultured neonatal rat ventricular myocytes and fibroblasts were treated with Angiotensin II (AngII) to simulate cardiac stress, both in the presence or absence of E2. In vivo RT-PCR showed that the transcript levels of the pro-fibrotic markers Collagen I, TGFβ, Fibrosin 1 (FBRS) and Lysil Oxidase (LOX) were significantly upregulated in HF (from 1.00±0.16 to 1.83±0.11 for Collagen 1, 1±0.86 to 4.33±0.59 for TGFβ, 1±0.52 to 3.61±0.22 for FBRS and 1.00±0.33 to 2.88±0.32 for LOX) and were reduced with E2 treatment to levels similar to CTRL. E2 also restored in vitro AngII-induced upregulation of LOX, TGFβ and Collagen 1 (LOX:1±0.23 in CTRL, 6.87±0.26 in AngII and 2.80±1.5 in AngII+E2; TGFβ: 1±0.08 in CTRL, 3.30±0.25 in AngII and 1.59±0.21 in AngII+E2; Collagen 1: 1±0.05 in CTRL.2±0.01 in AngII and 0.65±0.02 (p<0.05, values normalized to CTRL)). Furthermore, the pro-inflammatory interleukins IL-1β and IL-6 were upregulated from 1±0.19 to 1.90±0.09 and 1±0.30 to 5.29±0.77 in the in vivo model of HF, respectively, and reversed to CTRL levels with E2 therapy. In vitro, IL-1β was also significantly increased ∼ 4 fold from 1±0.63 in CTRL to 3.86±0.14 with AngII treatment and restored to 1.29±0.77 with Ang+E2 treatment. Lastly, the anti-inflammatory interleukin IL-10 was downregulated from 1.00±0.17 to 0.49±0.03 in HF and reversed to 0.67±0.09 in vivo with E2 therapy (all values normalized to CTRL). This data strongly suggests that one of the mechanisms for the beneficial action of estrogen on left ventricular heart failure is through reversal of inflammation and fibrosis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hideyuki Sasaki ◽  
Hiroshi Asanuma ◽  
Masashi Fujita ◽  
Hiroyuki Takahama ◽  
Masakatsu Wakeno ◽  
...  

Backgrounds; Since AMP-activated protein kinase (AMPK) is activated in the pressure-overloaded hypertrophic hearts, we investigated whether the activation of AMPK caused by metformin attenuates the progression of heart failure induced by rapid pacing in dogs and decreases cellular damage caused by oxidative stress in neonatal rat cardiac myocytes. Methods and Results; Heart failure was induced by right ventricular (RV) pacing at 230 bpm for 4 weeks in dogs. Treatment of dogs with metformin (100mg/kg/day, orally, n=8, Met group) for 4 weeks prevented significantly the progression of pacing-induced heart failure evaluated by echocardiographical and hemodynamic measurement compared with the control group (n=8). Left ventricular (LV) diastolic and systolic dimension (LVDd and LVDs) were smaller (32.8±0.4 and 26.7±0.9 mm, respectively) and fractional shortening (FS) and ejection fraction (EF) were preserved in Met group (18.6±1.8 and 45.5±3.5 %, respectively) compared with the control group (LVDd and LVDs; 36.5±1.0 and 33.0±1.0 mm, FS and EF; 9.6±0.7 and 27.0±1.9 %, p<0.05 vs. Met group each). Furthermore, both pulmonary capillary wedge pressure (PCWP) and mean pulmonary arterial pressure (mPA) were significantly lower in Met group (11.1±0.9 and 18.1±1.4 mmHg, respectively) compared with the control group (21.0±2.2 and 26.8±2.8 mmHg, respectively). Treatment of cultured cardiac myocytes with a maximal physiological concentration of metformin (10μmol/L) attenuated the cellular damage against H 2 O 2 exposure (50μmol/L). These effects were blunted by an AMPK inhibitor, compound-C (20μmol/L), suggesting that the activation of AMPK increased the cellular viability during H 2 O 2 exposure. Conclusions; Metformin that activates AMPK prevented the progression of heart failure induced by rapid pacing in dogs and attenuated the cellular damage against H 2 O 2 exposure in cardiac myocytes. AMPK may be one of new targets for preventing heart failure in clinical settings.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 552 ◽  
Author(s):  
Hanna Sarah Kutsche ◽  
Rolf Schreckenberg ◽  
Martin Weber ◽  
Christine Hirschhäuser ◽  
Susanne Rohrbach ◽  
...  

The cardiac expression of the mitochondrial uncoupling protein (UCP)-2 is increased in patients with heart failure. However, the underlying causes as well as the possible consequences of these alterations during the transition from hypertrophy to heart failure are still unclear. To investigate the role of UCP-2 mechanistically, expression of UCP-2 was silenced by small interfering RNA in adult rat ventricular cardiomyocytes. We demonstrate that a downregulation of UCP-2 by siRNA in cardiomyocytes preserves contractile function in the presence of angiotensin II. Furthermore, silencing of UCP-2 was associated with an upregulation of glucose transporter type (Glut)-4, increased glucose uptake, and reduced intracellular lactate levels, indicating improvement of the oxidative glucose metabolism. To study this adaptation in vivo, spontaneously hypertensive rats served as a model for cardiac hypertrophy due to pressure overload. During compensatory hypertrophy, we found low UCP-2 levels with an upregulation of Glut-4, while the decompensatory state with impaired function was associated with an increase of UCP-2 and reduced Glut-4 expression. By blocking the aldosterone receptor with spironolactone, both cardiac function as well as UCP-2 and Glut-4 expression levels of the compensated phase could be preserved. Furthermore, we were able to confirm this by left ventricular (LV) biopsies of patients with end-stage heart failure. The results of this study show that UCP-2 seems to impact the cardiac glucose metabolism during the transition from hypertrophy to failure by affecting glucose uptake through Glut-4. We suggest that the failing heart could benefit from low UCP-2 levels by improving the efficiency of glucose oxidation. For this reason, UCP-2 inhibition might be a promising therapeutic strategy to prevent the development of heart failure.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Dayue D Duan ◽  
Ying Yu ◽  
Guanlei Wang ◽  
Lingyu L Ye ◽  
Yi-gang Li

Backgrand: Myocardial hypertrophy causes an increase in myocyte volume and constitutive activation of a volume-sensitive outwardly-rectifying anion channel (VSORAC). The underlying molecular mechanisms and function of VSORAC in the electrical remodeling during myocardial hypertrophy and heart failure remain undefined. We tested whether cardiac CLC-3 chloride channels play a role in the hypertrophy-induced electrophysiological remodeling. Methods and Results: The age-matched CLC-3 knockout (Clcn3-/-) mice and their wild-type (Clcn3+/+) littermates were subjected to minimally-invasive transverse aortic banding (MTAB). In 77% (44/57) left ventricular (LV) myocytes isolated from MTAB-Clcn3+/+ mice a large VSORAC current was activated under isotonic conditions. Hypotonic cell-swelling caused no changes in the VSORAC but hypertonic cell-shrinkage significantly inhibited it. This constitutively-activated VSORAC had an anion selectivity of I->Cl->Asp-, and was inhibited by tamoxifen, PKC activation and intracellular application of anti-CLC-3 antibody. In the age-matched MTAB-Clcn3-/- mice, a significantly smaller outwardly-rectifying current was present in only 38% (36/94, P<0.05 vs MTAB-Clcn3+/+) LV myocytes. This current was neither increased by hypotonic stress nor inhibited by tamoxifen, PKC or anti-CLC-3 antibody, indicating not a VSORAC or CLC-3 current. Expression of CLC-3 protein was significantly increased in the LV tissues of MTAB-Clcn3+/+ mice but not in Sham-Clcn3+/+ and MTAB-Clcn3-/- mice. Both surface and intracardiac electrophysiological recordings revealed more atrial or ventricular arrhythmias in MTAB-Clcn3-/- mice than in MTAB- and Sham-Clcn3+/+ mice. Conclusions: Pressure-overload-induced myocardial hypertrophy causes an upregulation of CLC-3 expression and constitutive activation of CLC-3 may serve as a novel protective mechanism against the electrical remodeling during myocardial hypertrophy and heart failure.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Suresh K Verma ◽  
Prasanna Krishnamurthy ◽  
Venkata N Girikipathi ◽  
Tatiana Abramova ◽  
Moshin Khan ◽  
...  

Rationale: Although, autophagy is an essential cellular salvage process to maintain cellular homeostasis, pathological (stress-induced exaggerated/defective) autophagy can lead to cardiac abnormalities and ultimately heart failure. Therefore, a tight regulation of autophagic process would be important to treat chronic heart failure. Previously, we have shown that IL-10 strongly inhibited pressure overload-induced hypertrophy and heart failure, but role of IL-10 in regulation of pathological autophagy is not known. Hypothesis: We tested the hypothesis that IL-10 inhibits angiotensin II-induced pathological autophagy and this process, in part, led to improved cardiac function. Methods and Results: Pathological autophagy was induced in wild type (WT) and IL10-knockout (IL-10 KO) mice by angiotensin II (Ang II for 28 days) infusion. Ang II-induced left ventricular (LV) dysfunction and hypertrophic remodeling were accentuated in IL-10 KO mice compared to WT mice. IL-10 KO mice showed exaggerated autophagy as observed by Electron Microscopy and Western blotting (beclin 1, LC3 II/I and CHOP) with reduced AKT phosphorylation at serine-473. In neonatal rat ventricular cardiomyocytes (NRCM), Ang II treatment enhanced beclin1, LC3 and CHOP protein levels and inhibited AKT and 4EBP1 phosphorylation and Bcl2 levels. Interestingly, IL-10 inhibited Ang II-induced autophagic marker proteins. Additionally, IL-10 restored Ang II-induced suppression of AKT and 4EBP1 phosphrylation and restoration of Bcl2 protein level. Pharmacological inhibition of AKT via PI3K inhibitor (LY290002), reversed IL-10 responses on the Ang II-induced pathological autophagy, confirming that IL-10 mediated inhibition of autophagy is AKT dependent. Finally, as physical interaction of Bcl2 with beclin 1 is important to inhibit autophagy, we performed immunoprecipitation pull-down experiments, which showed Ang II disrupts the physical interaction of beclin 1 with Bcl2 and IL-10 reestablished this physical interaction to reduce autophagy. Conclusion: Our data provides a novel role of IL-10 in regulation of pathological autophagy and thus can act as a potential therapeutic molecule in treatment of chronic heart disease.


2020 ◽  
Vol 318 (3) ◽  
pp. H682-H695 ◽  
Author(s):  
Seulhee Kim ◽  
Jiajia Song ◽  
Patrick Ernst ◽  
Mary N. Latimer ◽  
Chae-Myeong Ha ◽  
...  

Evidence suggests that mitochondrial network integrity is impaired in cardiomyocytes from failing hearts. While oxidative stress has been implicated in heart failure (HF)-associated mitochondrial remodeling, the effect of mitochondrial-targeted antioxidants, such as mitoquinone (MitoQ), on the mitochondrial network in a model of HF (e.g., pressure overload) has not been demonstrated. Furthermore, the mechanism of this regulation is not completely understood with an emerging role for posttranscriptional regulation via long noncoding RNAs (lncRNAs). We hypothesized that MitoQ preserves mitochondrial fusion proteins (i.e., mitofusin), likely through redox-sensitive lncRNAs, leading to improved mitochondrial network integrity in failing hearts. To test this hypothesis, 8-wk-old C57BL/6J mice were subjected to ascending aortic constriction (AAC), which caused substantial left ventricular (LV) chamber remodeling and remarkable contractile dysfunction in 1 wk. Transmission electron microscopy and immunostaining revealed defective intermitochondrial and mitochondrial-sarcoplasmic reticulum ultrastructure in AAC mice compared with sham-operated animals, which was accompanied by elevated oxidative stress and suppressed mitofusin (i.e., Mfn1 and Mfn2) expression. MitoQ (1.36 mg·day−1·mouse−1, 7 consecutive days) significantly ameliorated LV dysfunction, attenuated Mfn2 downregulation, improved interorganellar contact, and increased metabolism-related gene expression. Moreover, our data revealed that MitoQ alleviated the dysregulation of an Mfn2-associated lncRNA (i.e., Plscr4). In summary, the present study supports a unique mechanism by which MitoQ improves myocardial intermitochondrial and mitochondrial-sarcoplasmic reticulum (SR) ultrastructural remodeling in HF by maintaining Mfn2 expression via regulation by an lncRNA. These findings underscore the important role of lncRNAs in the pathogenesis of HF and the potential of targeting them for effective HF treatment. NEW & NOTEWORTHY We have shown that MitoQ improves cardiac mitochondrial network integrity and mitochondrial-SR alignment in a pressure-overload mouse heart-failure model. This may be occurring partly through preventing the dysregulation of a redox-sensitive lncRNA-microRNA pair (i.e., Plscr4-miR-214) that results in an increase in mitofusin-2 expression.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
I Abe ◽  
T Terabayashi ◽  
Y Teshima ◽  
Y Ishii ◽  
M Miyoshi ◽  
...  

Abstract Background Cardiac hypertrophy is a compensatory response to pressure overload that leads to heart failure. Recent studies have shown that Rho signaling has crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. Rho is rapidly activated in response to pressure overload, but the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain unclear. Objective To identify the essential roles of mDia1 (Rho-effector molecule) in pressure overload-induced ventricular hypertrophy. Methods and results Male wild-type (WT) and mDia1-knockout (mDia1KO) mice (10–12 weeks old) were subjected to transverse aortic constriction (TAC) or a sham operation. The heart weight/tibia length ratio, cardiomyocyte cross-sectional area, left ventricular wall thickness, and expression of hypertrophy-specific genes were significantly decreased in mDia1KO mice 3 weeks after TAC, and the mortality rate was higher at 12 weeks. Echocardiography and the pressure-volume loop indicated that mDia1 deletion increased the severity of heart failure 8 weeks after TAC. Microarray gene expression profiling showed that the induction of immediate early genes due to the TAC operation was significantly lower in mDia1KO mice than WT mice, as was the activation of extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK). We examined the role of mDia1 in neonatal rat ventricular cardiomyocytes (NRVMs) exposed to mechanical stress. The siRNA-mediated silencing of mDia1 attenuated stretch-induced ERK and FAK phosphorylation, and gene expression of c-fos. Importantly, loss of mDia1 suppressed an increase in the F/G-actin ratio in response to pressure overload in the mice. In addition, increases in nuclear myocardin-related transcription factors (MRTFs) and serum response factor (SRF) were perturbed in response to pressure overload in mDia1KO mice and to mechanical stretch in mDia1 depleted NRVMs. Conclusions Rho-mDia1, through actin dynamics, plays critical roles in pressure overload-induced hypertrophy by regulating ERK and FAK phosphorylation and the transcriptional activity of MRTF-SRF.


Author(s):  
Ichitaro Abe ◽  
Takeshi Terabayashi ◽  
Katsuhiro Hanada ◽  
Hidekazu Kondo ◽  
Yasushi Teshima ◽  
...  

Abstract Aims Cardiac hypertrophy is a compensatory response to pressure overload, leading to heart failure. Recent studies have demonstrated that Rho is immediately activated in left ventricles after pressure overload and that Rho signalling plays crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. However, the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain not fully understood. In this study, we identified the pivotal roles of mammalian homologue of Drosophila diaphanous (mDia) 1, a Rho-effector molecule, in pressure overload-induced ventricular hypertrophy. Methods and results  Male wild-type (WT) and mDia1-knockout (mDia1KO) mice (10–12 weeks old) were subjected to a transverse aortic constriction (TAC) or sham operation. The heart weight/tibia length ratio, cardiomyocyte cross-sectional area, left ventricular wall thickness, and expression of hypertrophy-specific genes were significantly decreased in mDia1KO mice 3 weeks after TAC, and the mortality rate was higher at 12 weeks. Echocardiography indicated that mDia1 deletion increased the severity of heart failure 8 weeks after TAC. Importantly, we could not observe apparent defects in cardiac hypertrophic responses in mDia3-knockout mice. Microarray analysis revealed that mDia1 was involved in the induction of hypertrophy-related genes, including immediate early genes, in pressure overloaded hearts. Loss of mDia1 attenuated activation of the mechanotransduction pathway in TAC-operated mice hearts. We also found that mDia1 was involved in stretch-induced activation of the mechanotransduction pathway and gene expression of c-fos in neonatal rat ventricular cardiomyocytes (NRVMs). mDia1 regulated the filamentous/globular (F/G)-actin ratio in response to pressure overload in mice. Additionally, increases in nuclear myocardin-related transcription factors and serum response factor were perturbed in response to pressure overload in mDia1KO mice and to mechanical stretch in mDia1 depleted NRVMs. Conclusion  mDia1, through actin dynamics, is involved in compensatory cardiac hypertrophy in response to pressure overload.


2019 ◽  
Vol 316 (6) ◽  
pp. H1366-H1377
Author(s):  
Yoshifumi Okawa ◽  
Atsushi Hoshino ◽  
Makoto Ariyoshi ◽  
Satoshi Kaimoto ◽  
Shuhei Tateishi ◽  
...  

Despite the advances in medical therapy, the morbidity and mortality of heart failure (HF) remain unacceptably high. HF results from reduced metabolism–contraction coupling efficiency, so the modulation of cardiac metabolism may be an effective strategy for therapeutic interventions. Tumor suppressor p53 (TP53) and its downstream target TP53-induced glycolysis and apoptosis regulator (TIGAR) are known to modulate cardiac metabolism and cell fate. To investigate TIGAR’s function in HF, we compared myocardial, metabolic, and functional outcomes between TIGAR knockout (TIGAR−/−) mice and wild-type (TIGAR+/+) mice subjected to chronic thoracic transverse aortic constriction (TAC), a pressure-overload HF model. In wild-type mice hearts, p53 and TIGAR increased markedly during HF development. Eight weeks after TAC surgery, the left ventricular (LV) dysfunction, fibrosis, oxidative damage, and myocyte apoptosis were significantly advanced in wild-type than in TIGAR−/− mouse heart. Further, myocardial high-energy phosphates in wild-type hearts were significantly decreased compared with those of TIGAR−/− mouse heart. Glucose oxidation and glycolysis rates were also reduced in isolated perfused wild-type hearts following TAC than those in TIGAR−/− hearts, which suggest that the upregulation of TIGAR in HF causes impaired myocardial energetics and function. The effects of TIGAR knockout on LV function were also replicated in tamoxifen (TAM)-inducible cardiac-specific TIGAR knockout mice ( TIGARflox/flox/Tg(Myh6-cre/Esr1) mice). The ablation of TIGAR during pressure-overload HF preserves myocardial function and energetics. Thus, cardiac TIGAR-targeted therapy to increase glucose metabolism will be a novel strategy for HF. NEW & NOTEWORTHY The present study is the first to demonstrate that TP53-induced glycolysis and apoptosis regulator (TIGAR) is upregulated in the myocardium during experimental heart failure (HF) in mice and that TIGAR knockout can preserve the heart function and myocardial energetics during HF. Reducing TIGAR to enhance myocardial glycolytic energy production is a promising therapeutic strategy for HF.


Sign in / Sign up

Export Citation Format

Share Document