scholarly journals Nanostructured Lipid Carrier–Mediated Transdermal Delivery of Aceclofenac Hydrogel Present an Effective Therapeutic Approach for Inflammatory Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Neeraj K. Garg ◽  
Nikunj Tandel ◽  
Sanjay Kumar Bhadada ◽  
Rajeev K. Tyagi

Aceclofenac (ACE), a cyclooxygenase-2 inhibitor, is the derivative of the diclofenac group that has been in use for the symptomatic treatment of systemic inflammatory autoimmune disease, rheumatoid arthritis (RA). Partial solubility, high lipophilic nature, and stability challenge its use in developing topical formulations. Hence, we developed and characterized nanostructured lipid carrier (NLC)–based ACE (ACE-NLC) hydrogel for an efficient transdermal delivery. NLC microemulsion was prepared using different lipids by various methods and was characterized with respect to particle size, zeta potential, surface morphology, and drug encapsulation efficiency. The optimized NLC formulation was incorporated into Carbopol® 940 gel, and this arrangement was characterized and compared with the existing marketed gel (Mkt-gel) formulation to assess in vitro drug release, rheology, texture profile, in vivo skin retention and permeation, and stability. Furthermore, prepared and characterized ACE-loaded NLC formulation was evaluated for skin integrity and fitted in a dermatokinetic model. The results of this study confirmed the spherical shape; smooth morphology and nanometric size attested by Zetasizer and scanning and transmission electron microcopy; and stability of the ACE-NLC formulation. The ACE-NLC-gel formulation showed good rheological and texture characteristics, and better skin distribution in the epidermis and dermis. Moreover, ACE-NLC permeated deeper in the skin layers and kept the skin integrity intact. Overall, NLC-based gel formulation of ACE might be a promising nanoscale lipid carrier for topical application when compared with the conventional Mkt-gel formulation.

2019 ◽  
Vol 16 (10) ◽  
pp. 923-930 ◽  
Author(s):  
Hamid Rashidzadeh ◽  
Mahsa Salimi ◽  
Somayeh Sadighian ◽  
Kobra Rostamizadeh ◽  
Ali Ramazani

Background: It was shown that curcumin (Cur) has anti-plasmodium activity, however, its weak bioavailability, rapid metabolism, and limited chemical stability has restricted its application in clinical usages. Nanostructured lipid carriers (NLCs) are a type of drug-delivery systems (DDSs) which their core matrix is composed of both solid and liquid lipids. Objective: The aim of the current study was to prepare and characterize curcumin-loaded nanostructured lipid carriers (Cur-NLC) for malaria treatment. Methods: For the production of NLC, coconut oil and cetyl palmitate were selected as a liquid and solid lipid, respectively. In order to prepare the Cur-NLC, the microemulsion method was applied. General toxicity assay on Artemia salina and also hemocompatibility was investigated. Antimalarial activity was studied on mice infected with Plasmodium berghei. Results: The NLCs mean particle size and polydispersity index (PI) was 145 nm and 0.3, respectively. Moreover, the zeta potential of the Cur-NLC was −25 mV, as well as, the NLCs showed pseudo-spherical shape which revealed via transmission electron microscopy (TEM). The loading capacity and encapsulation efficacy of the obtained Cur-NLC were 3.1 ± 0.015% and 74 ± 3.32%, respectively. In vitro, Cur release profiles showed a sustained-release pattern up to 5 days in synthesized Cur-NLC. The results of in vivo anti-plasmodial activity against P. berghei revealed that antimalarial activity of Cur-NLC was high 2-fold compared with bare Cur at the tested dosage level. Conclusion: : The results of this study showed that NLC would be used as a potential nanocarrier for the treatment of malaria.


Author(s):  
Tang Qin ◽  
Zhu Dai ◽  
Xiaodi Xu ◽  
Zilin Zhang ◽  
Xiangyu You ◽  
...  

Background: The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissues penetration. Methods: This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process. Results: Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and transmission electron microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5 %) and a positive zeta potential in the range of 22.5 - 31.2 mV, indicating excellent physical stability. Discussion: Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivocompared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentrations of voriconazole (2.5 μg/mL, p < 0.05). Conclusion: In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formu-lation for the topical ocular delivery of voriconazole.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Author(s):  
Bogna Grygiel-Górniak

AbstractThe majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.


2021 ◽  
pp. 088532822110346
Author(s):  
Mohammad Yoozbashi ◽  
Hamid Rashidzadeh ◽  
Mehraneh Kermanian ◽  
Somayeh Sadighian ◽  
Mir-Jamal Hosseini ◽  
...  

In this research, magnetic nanostructured lipid carriers (Mag-NLCs) were synthesized for curcumin (CUR) delivery. NLCs are drug-delivery systems prepared by mixing solid and liquid (oil) lipids. For preparation of NLCs, cetylpalmitate was selected as solid lipid and fish oil as liquid lipid. CUR-Mag-NLCs were prepared using high-pressure homogenization technique and were characterized by methods including X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The CUR-Mag-NLCs were developed as a particle with a size of 140 ± 3.6 nm, a polydispersity index of 0.196, and a zeta potential of −22.6 mV. VSM analysis showed that the CUR-Mag-NLCs have excellent magnetic properties. Release rate of the drug was higher at 42 °C than 37 °C, indicating that release of the synthesized nanoparticles is temperature-dependent. Evaluation of mitochondrial toxicity was done using the isolated rats liver mitochondria including glutathione (GSH), malondialdehyde (MDA), and the ferric- reducing ability of plasma (FRAP) assays to study biosafety of the CUR-Mag-NLCs. Results of In vitro study on the isolated mitochondria revealed that both CUR-Mag-NLCs and curcumin have no specific mitochondrial toxicity.


2007 ◽  
Vol 9 (4) ◽  
pp. 421-433 ◽  
Author(s):  
Donatella Paolino ◽  
Rita Muzzalupo ◽  
Antonio Ricciardi ◽  
Christian Celia ◽  
Nevio Picci ◽  
...  

Author(s):  
Birte Weber ◽  
Niklas Franz ◽  
Ingo Marzi ◽  
Dirk Henrich ◽  
Liudmila Leppik

AbstractDue to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.


Sign in / Sign up

Export Citation Format

Share Document