In vivo Antiplasmodial Activity of Curcumin-Loaded Nanostructured Lipid Carriers

2019 ◽  
Vol 16 (10) ◽  
pp. 923-930 ◽  
Author(s):  
Hamid Rashidzadeh ◽  
Mahsa Salimi ◽  
Somayeh Sadighian ◽  
Kobra Rostamizadeh ◽  
Ali Ramazani

Background: It was shown that curcumin (Cur) has anti-plasmodium activity, however, its weak bioavailability, rapid metabolism, and limited chemical stability has restricted its application in clinical usages. Nanostructured lipid carriers (NLCs) are a type of drug-delivery systems (DDSs) which their core matrix is composed of both solid and liquid lipids. Objective: The aim of the current study was to prepare and characterize curcumin-loaded nanostructured lipid carriers (Cur-NLC) for malaria treatment. Methods: For the production of NLC, coconut oil and cetyl palmitate were selected as a liquid and solid lipid, respectively. In order to prepare the Cur-NLC, the microemulsion method was applied. General toxicity assay on Artemia salina and also hemocompatibility was investigated. Antimalarial activity was studied on mice infected with Plasmodium berghei. Results: The NLCs mean particle size and polydispersity index (PI) was 145 nm and 0.3, respectively. Moreover, the zeta potential of the Cur-NLC was −25 mV, as well as, the NLCs showed pseudo-spherical shape which revealed via transmission electron microscopy (TEM). The loading capacity and encapsulation efficacy of the obtained Cur-NLC were 3.1 ± 0.015% and 74 ± 3.32%, respectively. In vitro, Cur release profiles showed a sustained-release pattern up to 5 days in synthesized Cur-NLC. The results of in vivo anti-plasmodial activity against P. berghei revealed that antimalarial activity of Cur-NLC was high 2-fold compared with bare Cur at the tested dosage level. Conclusion: : The results of this study showed that NLC would be used as a potential nanocarrier for the treatment of malaria.

2021 ◽  
Vol 12 ◽  
Author(s):  
Neeraj K. Garg ◽  
Nikunj Tandel ◽  
Sanjay Kumar Bhadada ◽  
Rajeev K. Tyagi

Aceclofenac (ACE), a cyclooxygenase-2 inhibitor, is the derivative of the diclofenac group that has been in use for the symptomatic treatment of systemic inflammatory autoimmune disease, rheumatoid arthritis (RA). Partial solubility, high lipophilic nature, and stability challenge its use in developing topical formulations. Hence, we developed and characterized nanostructured lipid carrier (NLC)–based ACE (ACE-NLC) hydrogel for an efficient transdermal delivery. NLC microemulsion was prepared using different lipids by various methods and was characterized with respect to particle size, zeta potential, surface morphology, and drug encapsulation efficiency. The optimized NLC formulation was incorporated into Carbopol® 940 gel, and this arrangement was characterized and compared with the existing marketed gel (Mkt-gel) formulation to assess in vitro drug release, rheology, texture profile, in vivo skin retention and permeation, and stability. Furthermore, prepared and characterized ACE-loaded NLC formulation was evaluated for skin integrity and fitted in a dermatokinetic model. The results of this study confirmed the spherical shape; smooth morphology and nanometric size attested by Zetasizer and scanning and transmission electron microcopy; and stability of the ACE-NLC formulation. The ACE-NLC-gel formulation showed good rheological and texture characteristics, and better skin distribution in the epidermis and dermis. Moreover, ACE-NLC permeated deeper in the skin layers and kept the skin integrity intact. Overall, NLC-based gel formulation of ACE might be a promising nanoscale lipid carrier for topical application when compared with the conventional Mkt-gel formulation.


Author(s):  
Tang Qin ◽  
Zhu Dai ◽  
Xiaodi Xu ◽  
Zilin Zhang ◽  
Xiangyu You ◽  
...  

Background: The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissues penetration. Methods: This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process. Results: Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and transmission electron microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5 %) and a positive zeta potential in the range of 22.5 - 31.2 mV, indicating excellent physical stability. Discussion: Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivocompared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentrations of voriconazole (2.5 μg/mL, p < 0.05). Conclusion: In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formu-lation for the topical ocular delivery of voriconazole.


2015 ◽  
Vol 60 (3) ◽  
pp. 1304-1318 ◽  
Author(s):  
Vinoth Rajendran ◽  
Shilpa Rohra ◽  
Mohsin Raza ◽  
Gulam Mustafa Hasan ◽  
Suparna Dutt ◽  
...  

The global emergence of drug resistance in malaria is impeding the therapeutic efficacy of existing antimalarial drugs. Therefore, there is a critical need to develop an efficient drug delivery system to circumvent drug resistance. The anticoccidial drug monensin, a carboxylic ionophore, has been shown to have antimalarial properties. Here, we developed a liposome-based drug delivery of monensin and evaluated its antimalarial activity in lipid formulations of soya phosphatidylcholine (SPC) cholesterol (Chol) containing either stearylamine (SA) or phosphatidic acid (PA) and different densities of distearoyl phosphatidylethanolamine-methoxy-polyethylene glycol 2000 (DSPE-mPEG-2000). These formulations were found to be more effective than a comparable dose of free monensin inPlasmodium falciparum(3D7) cultures and established mice models ofPlasmodium bergheistrains NK65 and ANKA. Parasite killing was determined by a radiolabeled [3H]hypoxanthine incorporation assay (in vitro) and microscopic counting of Giemsa-stained infected erythrocytes (in vivo). The enhancement of antimalarial activity was dependent on the liposomal lipid composition and preferential uptake by infected red blood cells (RBCs). The antiplasmodial activity of monensin in SA liposome (50% inhibitory concentration [IC50], 0.74 nM) and SPC:Chol-liposome with 5 mol% DSPE-mPEG 2000 (IC50, 0.39 nM) was superior to that of free monensin (IC50, 3.17 nM), without causing hemolysis of erythrocytes. Liposomes exhibited a spherical shape, with sizes ranging from 90 to 120 nm, as measured by dynamic light scattering and high-resolution electron microscopy. Monensin in long-circulating liposomes of stearylamine with 5 mol% DSPE-mPEG 2000 in combination with free artemisinin resulted in enhanced killing of parasites, prevented parasite recrudescence, and improved survival. This is the first report to demonstrate that monensin in PEGylated stearylamine (SA) liposome has therapeutic potential against malaria infections.


1985 ◽  
Vol 248 (6) ◽  
pp. R709-R716
Author(s):  
R. J. Lowy ◽  
F. P. Conte

Larval salt glands isolated from the naupliar brine shrimp (Artemia salina) were examined using light microscopy and scanning and transmission electron microscopy. These methods demonstrated that most cellular and subcellular features of the in vitro organ compared favorably with those seen in vivo. This salt gland measures 130 micron in diameter and is comprised of 50-70 secretory cells, which are of a single epithelial cell type. Characteristic ultrastructural features that are well preserved include apical to basal cell polarity, apical plasma membrane projections, and the extent of the basolateral tubular labyrinth and its association with numerous mitochondria. Some features that have been altered are a decrease in cell-cell contact, separation of septate junctions, and expansion of tubular labyrinth lumens and mitochondrial cristae. Use of this preparation has allowed examination of the salt gland cell's hemocoelic surface for the first time and provided information about the ultrastructure of the tufts formed by the apical plasma membrane.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 908
Author(s):  
Jéssica Adriana Jesus ◽  
Ilza Maria Oliveira Sousa ◽  
Thays Nicolli Fragoso da Silva ◽  
Aurea Favero Ferreira ◽  
Márcia Dalastra Laurenti ◽  
...  

Ursolic acid, a triterpene produced by plants, displayed leishmanicidal activity in vitro and in vivo; however, the low solubility of this triterpene limits its efficacy. To increase the activity of ursolic acid (UA), this triterpene was entrapped in nanostructured lipid carriers (UA-NLC), physical-chemical parameters were estimated, the toxicity was assayed in healthy golden hamsters, and the efficacy of UA-NLC was studied in experimental visceral leishmanisis. UA-NLC exhibited a spherical shape with a smooth surface with a size of 266 nm. UA-NLC displayed low polydispersity (PDI = 0.18) and good colloidal stability (−29.26 mV). Hamsters treated with UA-NLC did not present morphological changes in visceral organs, and the levels of AST, ALT, urea and creatinine were normal. Animals infected with Leishmania (Leishmania) infantum and treated with UA-NLC showed lower parasitism than the infected controls, animals treated with UA or Amphotericin B (AmB). The therapeutic activity of UA-NLC was associated with the increase in a protective immune response, and it was associated with a high degree of spleen and liver preservation, and the normalization of hepatic and renal functions. These data indicate that the use of lipid nanoparticles as UA carriers can be an interesting strategy for the treatment of leishmaniasis.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 532
Author(s):  
Hae-Soo Yun ◽  
Sylvatrie-Danne Dinzouna-Boutamba ◽  
Sanghyun Lee ◽  
Zin Moon ◽  
Dongmi Kwak ◽  
...  

In traditional Chinese medicine, Ranunculus japonicus has been used to treat various diseases, including malaria, and the young stem of R. japonicus is consumed as a food in the Republic of Korea. However, experimental evidence of the antimalarial effect of R. japonicus has not been evaluated. Therefore, the antimalarial activity of the extract of the young stem of R. japonicus was evaluated in vitro using both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains; in vivo activity was evaluated in Plasmodium berghei-infected mice via oral administration followed by a four-day suppressive test focused on biochemical and hematological parameters. Exposure to extracts of R. japonicus resulted in significant inhibition of both chloroquine-sensitive (3D7) and resistant (Dd2) strains of P. falciparum, with IC50 values of 6.29 ± 2.78 and 5.36 ± 4.93 μg/mL, respectively. Administration of R. japonicus also resulted in potent antimalarial activity against P. berghei in infected mice with no associated toxicity; treatment also resulted in improved hepatic, renal, and hematologic parameters. These results demonstrate the antimalarial effects of R. japonicus both in vitro and in vivo with no apparent toxicity.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1131
Author(s):  
Maricela Santana ◽  
Gonzalo Montoya ◽  
Raúl Herrera ◽  
Lía Hoz ◽  
Enrique Romo ◽  
...  

Dental cementum contains unique molecules that regulate the mineralization process in vitro and in vivo, such as cementum protein 1 (CEMP1). This protein possesses amino acid sequence motifs like the human recombinant CEMP1 with biological activity. This novel cementum protein 1-derived peptide (CEMP1-p3, from the CEMP1’s N-terminal domain: (QPLPKGCAAVKAEVGIPAPH), consists of 20 amino acids. Hydroxyapatite (HA) crystals could be obtained through the combination of the amorphous precursor phase and macromolecules such as proteins and peptides. We used a simple method to synthesize peptide/hydroxyapatite nanocomposites using OCP and CEMP1-p3. The characterization of the crystals through scanning electron microscopy (SEM), powder X-ray diffraction (XRD), high--resolution transmission electron microscopy (HRTEM), and Raman spectroscopy revealed that CEMP1-p3 transformed OCP into hydroxyapatite (HA) under constant ionic strength and in a buffered solution. CEMP1-p3 binds and highly adsorbs to OCP and is a potent growth stimulator of OCP crystals. CEMP1-p3 fosters the transformation of OCP into HA crystals with crystalline planes (300) and (004) that correspond to the cell of hexagonal HA. Octacalcium phosphate crystals treated with CEMP1-p3 grown in simulated physiological buffer acquired hexagonal arrangement corresponding to HA. These findings provide new insights into the potential application of CEMP1-p3 on possible biomimetic approaches to generate materials for the repair and regeneration of mineralized tissues, or restorative materials in the orthopedic field.


Sign in / Sign up

Export Citation Format

Share Document