scholarly journals Long Noncoding RNA 00472: A Novel Biomarker in Human Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Dan-yang Ren ◽  
Xin-rong Yuan ◽  
Cai-xia Tu ◽  
Jian-ling Shen ◽  
Yun-wei Li ◽  
...  

Long non-coding RNAs (lncRNAs) play important roles in human diseases. They control gene expression levels and influence various biological processes through multiple mechanisms. Functional abnormalities in lncRNAs are strongly associated with occurrence and development of various diseases. LINC00472, which is located on chromosome 6q13, is involved in several human diseases, particularly cancers of the breast, lung, liver, osteosarcoma, bladder, colorectal, ovarian, pancreatic and stomach. Importantly, LINC00472 can be used as a biomarker for breast cancer cell sensitivity to chemotherapeutic regimens, including doxorubicin. LINC00472 is regulated by microRNAs and several signaling pathways. However, the significance of LINC00472 in human diseases has not been clearly established. In this review, we elucidate on the significance of LINC00472 in various human diseases, indicating that LINC00472 may be a diagnostic, prognostic as well as therapeutic target for these diseases.

2012 ◽  
Vol 26 (5) ◽  
pp. 736-747 ◽  
Author(s):  
Miao Sun ◽  
Gary D. Isaacs ◽  
Nasun Hah ◽  
Nina Heldring ◽  
Elizabeth A. Fogarty ◽  
...  

2008 ◽  
Vol 36 (6) ◽  
pp. 1206-1210 ◽  
Author(s):  
Laura Fontana ◽  
Antonio Sorrentino ◽  
Gianluigi Condorelli ◽  
Cesare Peschle

miRNAs (microRNAs) are important regulatory molecules that control gene expression in all eukaryotes. miRNAs play an essential role in basic cellular activities such as proliferation, differentiation, morphogenesis and apoptosis. In haemopoiesis, several miRNA-based pathways have been identified. Importantly, miRNA mutations or mis-expression correlate with various human diseases. In cancer, deregulated miRNAs can function as tumour suppressors or oncogenes. The present review focuses on the recent literature concerning the role of miRNAs in three different research areas: haematology, cardiology and oncology, with particular focus on the results obtained by our group.


2013 ◽  
Vol 54 ◽  
pp. 17-28 ◽  
Author(s):  
Nham Tran ◽  
Gyorgy Hutvagner

Regulation of gene expression is a fundamental process in both prokaryotic and eukaryotic organisms. Multiple regulatory mechanisms are in place to control gene expression at the level of transcription, post-transcription and post-translation to maintain optimal RNA and protein expressions in cells. miRNAs (microRNAs) are abundant short 21–23 nt non-coding RNAs that are key regulators of virtually all eukaryotic biological processes. The levels of miRNAs in an organism are crucial for proper development and sustaining optimal cell functions. Therefore the processing and regulation of the processing of these miRNAs are critical. In the present chapter we highlight the most important steps of miRNA processing, describe the functions of key proteins involved in the maturation of miRNAs, and discuss how the generation and the stability of miRNAs are regulated.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 805 ◽  
Author(s):  
Alessandro Allegra ◽  
Caterina Musolino ◽  
Alessandro Tonacci ◽  
Giovanni Pioggia ◽  
Sebastiano Gangemi

The human microbiota is made up of the fungi, bacteria, protozoa and viruses cohabiting within the human body. An altered microbiota can provoke diseases such as cancer. The mechanisms by which a modified microbiota can intervene in the onset and progression of neoplastic diseases are manifold. For instance, these include the effects on the immune system and the onset of obesity. A different mechanism seems to be constituted by the continuous and bidirectional relationships existing between microbiota and miRNAs. MiRNAs emerged as a novel group of small endogenous non-coding RNAs from that control gene expression. Several works seem to confirm the presence of a close connection between microbiota and miRNAs. Although the main literature data concern the correlations between microbiota, miRNAs and colon cancer, several researches have revealed the presence of connections with other types of tumour, including the ovarian tumour, cervical carcinoma, hepatic carcinoma, neoplastic pathologies of the central nervous system and the possible implication of the microbiota-miRNAs system on the response to the treatment of neoplastic pathologies. In this review, we summarise the physiological and pathological functions of the microbiota on cancer onset by governing miRNA production. A better knowledge of the bidirectional relationships existing between microbiota and miRNAs could provide new markers for the diagnosis, staging and monitoring of cancer and seems to be a promising approach for antagomir-guided approaches as therapeutic agents.


The Analyst ◽  
2017 ◽  
Vol 142 (17) ◽  
pp. 3203-3211 ◽  
Author(s):  
Nayi Wang ◽  
Jijun Cheng ◽  
Rong Fan ◽  
Jun Lu

MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression at the post-transcriptional levelviaa complex regulatory network that requires genome-wide miRNA profiling to dissect.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zongpei Song ◽  
David K. C. Cooper ◽  
Zhiming Cai ◽  
Lisha Mou

The pig is an important source of meat production and provides a valuable model for certain human diseases. MicroRNA (miRNA), which is noncoding RNA and regulates gene expression at the posttranscriptional level, plays a critical role in various biological processes. Studies on identification and function of mature miRNAs in multiple pig tissues are increasing, yet the literature is limited. Therefore, we reviewed current research to determine the miRNAs expressed in specific pig tissues that are involved in carcass values (including muscle and adipocytes), reproduction (including pituitary, testis, and ovary), and development of some solid organs (e.g., brain, lung, kidney, and liver). We also discuss the possible regulating mechanisms of miRNA. Finally, as pig organs are suitable candidates for xenotransplantation, biomarkers of their miRNA in xenotransplantation were evaluated.


2020 ◽  
Vol 26 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Chong Guo ◽  
Gang Zhou ◽  
...  

Background: CASC15, one of long non-coding RNA, is involved in the regulation of many tumor biological processes, and is expected to become a new biological therapeutic target. This paper aims to elucidate the pathophysiological function of CASC15 in various tumors. Methods: The relationship between CASC15 and tumors was analyzed by searching references, and summarizes the specific pathophysiological mechanism of CASC15. Results: LncRNA CASC15 is closely related to tumor development, and has been shown to be abnormally high expressed in all kinds of tumors, including breast cancer, cervical cancer, lung cancer, hepatocellular carcinoma, gastric cancer, bladder cancer, colon cancer, colorectal cancer, cardiac hypertrophy, intrahepatic cholangiocarcinoma, leukemia, melanoma, tongue squamous cell carcinoma, nasopharyngeal carcinoma. However, CASC15 has been found to be downexpressed abnormally in ovarian cancer, glioma and neuroblastoma. Besides, it is identified that CASC15 can affect the proliferation, invasion and apoptosis of tumors. Conclusion: LncRNA CASC15 has the potential to become a new therapeutic target or marker for a variety of tumors.


Author(s):  
C. Boulard ◽  
J. Thévenin ◽  
O. Tranquet ◽  
V. Laporte ◽  
L. Lepiniec ◽  
...  

1974 ◽  
Vol 71 (12) ◽  
pp. 5057-5061 ◽  
Author(s):  
T. Barrett ◽  
D. Maryanka ◽  
P. H. Hamlyn ◽  
H. J. Gould

Sign in / Sign up

Export Citation Format

Share Document