scholarly journals Resolvin D1 Attenuates Doxorubicin-Induced Cardiotoxicity by Inhibiting Inflammation, Oxidative and Endoplasmic Reticulum Stress

2022 ◽  
Vol 12 ◽  
Author(s):  
Menglong Wang ◽  
Jishou Zhang ◽  
Mengmeng Zhao ◽  
Jianfang Liu ◽  
Jing Ye ◽  
...  

Resolvin D1 (RvD1) is a lipid mediator that promotes resolution of inflammation. However, the function of RvD1 in doxorubicin- (Dox-) induced cardiotoxicity remains to be clarified. This study aimed to investigate whether RvD1 could attenuate Dox-induced cardiac injury. The mice were divided into three groups: control, Dox (20 mg/kg, once, intraperitoneally), and Dox + RvD1. RvD1 (2.5 μg/kg, intraperitoneally) was injected daily for 5 days. Echocardiography was performed to evaluate the cardiac function, and the heart tissue and serum samples were collected for further analyses. The results showed that RvD1 attenuated the decreased ratio of heart weight/body weight and heart weight/tibia length, the increased level of creatine kinase and activity of lactate dehydrogenase after Dox treatment. RvD1 improved the ejection fraction and fractional shortening of left ventricular and attenuated the severity of apoptosis induced by Dox. As for the underlying pathways, the results showed that RvD1 reduced the expression of IL-1 and IL-6, and attenuated the phosphorylation of P65 in cardiac tissue. RvD1 attenuated the oxidative stress induced by Dox, as demonstrated by the attenuated levels of superoxide dismutase, glutathione, and malondialdehyde, decreased expression of Nox-2 and Nox-4 and increased expression of Nrf-2 and HO-1. In addition, RvD1 also inhibited the endoplasmic reticulum stress induced by Dox. These results indicate the potential therapeutic benefits of RvD1 in Dox-induced cardiotoxicity in mice, and the mechanism may be related to the attenuated inflammation, oxidative stress and endoplasmic reticulum stress.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Xi Liu ◽  
Yangyang Niu ◽  
Xiaoqin Zhang ◽  
Yingying Zhang ◽  
Ying Yu ◽  
...  

Background and Aims. Klotho is an aging-suppressor gene mainly expressed in the renal tubules. The klotho gene encodes the α-klotho protein, which has many functions. Previous studies have found that α-klotho protein has a cardiorenal protective function. α-Klotho deficiency renders the kidney more susceptible to injury and results in cardiovascular calcification and left ventricular hypertrophy in chronic kidney disease. However, the role of α-klotho in acute heart injury and acute kidney injury with sepsis remains unknown. This study aimed to investigate the effects and mechanisms of α-klotho in septic cardiorenal injury. Methods. Male 8-week-old C57BL/6 mice were randomly assigned to the control group, lipopolysaccharide (LPS; 10 mg/kg) group, LPS (10 mg/kg)+α-klotho (0.01 mg/kg) group, and LPS (10 mg/kg)+α-klotho (0.02 mg/kg) group. Recombinant α-klotho was intraperitoneally injected an hour before LPS injection. Mice were euthanized at 24 h after LPS injection. The serum troponin, brain natriuretic peptide (BNP), neutrophil gelatinase-associated lipocalin (NGAL), and creatinine levels were measured in all groups at 24 h. Biomarkers of mice heart apoptosis, inflammation, oxidative stress, and endoplasmic reticulum stress, such as caspase-3, interleukin 1 (IL-1), reactive oxygen species (ROS), and glucose-regulated protein 78 (GRP78), were also measured. Results. α-Klotho was mainly expressed in mice kidneys and was undetectable in the control mice hearts. α-Klotho substantially decreased after LPS injection. In the LPS group, the serum troponin levels significantly increased as early as 6 h (p<0.05) after LPS injection, while the BNP, NGAL, and creatinine levels significantly increased at 24 h (p<0.05). Pretreatment with α-klotho significantly ameliorated acute cardiorenal injury. In the LPS+α-klotho (0.01 mg/kg) group, the levels of apoptosis, inflammation, and oxidative stress were decreased, while the level of endoplasmic reticulum stress was elevated. Conclusions. α-Klotho significantly alleviates acute cardiorenal injury in LPS-induced septic cardiorenal injury due to the inhibition of apoptosis, inflammation, and oxidation, as well as the regulation of endoplasmic reticulum stress levels.


2015 ◽  
Vol 21 ◽  
pp. 85-86
Author(s):  
William Kurban ◽  
Salma Makhoul Ahwach ◽  
Melanie Thomas ◽  
Luisa Onsteed-Haas ◽  
Michael Haas

2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Kureishi Bando ◽  
Y.R Remina ◽  
T.K Kamihara ◽  
K.N Nishimura ◽  
T.M Murohara

Abstract Background Glucose-dependent insulinotropic peptide (GIP) is incretin hormone that is emerged as an important regulator of lipid metabolism. Fat intake induces hypersecretion of GIP that is involved in obesity and ectopic fat accumulation. Aging is another stimulant of GIP hypersecretion, which is suggested as a cause of “sarcopenic obesity in elderly”. In heart, aging is the known risk factor of HFpEF, of which typical characteristics is pathological cardiac hypertrophy induced by unknown cause(s). It remained uncertain whether any ectopic fat accumulation, such as cardiac steatosis may cause the aging-induced cardiac hypertrophy. Ceramide is one of the lipid metabolites that involves in apoptosis, inflammation, and stress responses, which are among the pathogenic components of heart failure. However, it remained unclear whether the ceramide may play any pathophysiological role in cardiac aging. Purpose We thus hypothesized whether cardiac aging may alter cardiac lipid metabolism and the GIP may play a regulatory role in the cardiac aging via modulating cardiac steatosis, particularly ceramide. Methods Mouse model of GIPR deficiency (GIPR-KO) was employed and cardiac evaluation of GIPR-KO and the age-matched wild type mice were performed. Results Aging (50w/o) induced GIP hypersecretion in control mice and their body and heart weight were 50% increased as compared to younger counterpart (10w/o). In contrast, the aging-induced increase rate in body and heart weight of GIPR-KO was significantly lower (22%). Aging also increased the circulating ketone bodies with increase in FGF21 expression in heart and, notably, there was no pathological increase in cardiac ceremide and oxidative stress with normal left-ventricular (LV) function (LVEF=82.2±1.8). In contrast, GIPR-KO exhibited pathological increase in cardiac ceramide without the elevation of the circulating ketone bodies. The younger GIPR-KO (10 w/o) exhibited normal left-ventricular (LV) function, however, the older mice (50 w/o) exhibited systolic LV dysfunction (LVEF=55.8±8.5) with increase in cardiac apoptosis and oxidative stress. Cardiac ceramide accumulation was increased in the aged normal mice, which was significantly higher in the aged GIPR-KO. Furthermore, GIPR-KO exhibited increase in cardiac fibrosis and oxidative stress, which were absent in the aged normal counterpart. Conclusion Aging increased circulating GIP level the leads to compensatory rise in the circulating ketone bodies without pathological increase in cardiac ceremide and related oxidative stress in heart. Loss of GIP signaling caused pathological increase in cardiac ceramide, leading to the aging-induced progression of systolic left-ventricular dysfunction. Collectively, we conclude that the aging-induced GIP hyperexcretion is essential for the aging-induced healthy cardiac remodeling by augmenting compensatory ketone body elevation. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): KAKEN-HI


Author(s):  
Mohamed Omar Taqi ◽  
Mohammed Saeed-Zidane ◽  
Samuel Gebremedhn ◽  
Dessie Salilew-Wondim ◽  
Ernst Tholen ◽  
...  

AbstractTranscription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


Author(s):  
Hajar Oghbaei ◽  
Leila Hosseini ◽  
Fereshteh Farajdokht ◽  
Sepideh Rahigh Aghsan ◽  
Alireza Majdi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document