scholarly journals Encapsulated Escitalopram and Paroxetine Intranasal Co-Administration: In Vitro/In Vivo Evaluation

2021 ◽  
Vol 12 ◽  
Author(s):  
Soraia Silva ◽  
Joana Bicker ◽  
Carla Fonseca ◽  
Nuno R. Ferreira ◽  
Carla Vitorino ◽  
...  

Depression is a common mental disorder. Its treatment with selective serotonin reuptake inhibitors (SSRIs) is effective only in a fraction of patients, and pharmacoresistance is increasing steadily. Intranasal (IN) drug delivery to the brain stands out as a promising strategy to improve current therapeutic approaches by operating as a shuttle to overcome the blood–brain barrier. This work aimed to simultaneously administer escitalopram and paroxetine by IN route to mice. For this purpose, three nanostructured lipid carriers (NLC1, NLC2, and BorNLC) and one nanoemulsion (NE) were tested for drug loading. After their characterization, investigation of their impact on nasal cell viability and SSRI permeability assays were performed, using a human nasal RPMI 2650 cell line in air–liquid interface. In vitro assays demonstrated that NLCs, including borneol (BorNLC), significantly increased escitalopram permeability (p < 0.01) and paroxetine recovery values (p < 0.05) in relation to the other formulations and non-encapsulated drugs. IN and intravenous (IV) pharmacokinetic studies performed in vivo with a single dose of 2.38 mg/kg demonstrated similar results for escitalopram brain-to-plasma ratios. IN administrations delayed escitalopram peak concentrations in the brain for 15–60 min and no direct nose-to-brain delivery was detected. However, encapsulation with BorNLC considerably decreased escitalopram exposure in the lungs (124 μg min/g) compared with free escitalopram by IN (168 μg min/g) and IV (321 μg min/g) routes. Surprisingly, BorNLC IN instillation increased concentration levels of paroxetine in the brain by five times and accelerated brain drug delivery. Once again, lung exposure was considerably lower with BorNLC (AUCt = 0.433 μg min/g) than that with IV administration (AUCt = 1.01 μg min/g) and non-encapsulated IN formulation (AUCt = 2.82 μg min/g). Direct nose-to-brain delivery was observed for paroxetine IN administration with a direct transport percentage (DTP) of 56.9%. If encapsulated, it increases to 74.2%. These results clearly emphasize that nose-to-brain delivery and lung exposure depend on the formulation and on the characteristics of the drug under investigation. NLCs seem to be an advantageous strategy for nose-to-brain delivery of lipophilic molecules, since they reduce systemic and lung exposure, thereby decreasing adverse effects. For hydrophilic compounds, NLCs are particularly important to decrease lung exposure after IN administration.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1059
Author(s):  
Saif Ahmad Khan ◽  
Saleha Rehman ◽  
Bushra Nabi ◽  
Ashif Iqubal ◽  
Nida Nehal ◽  
...  

Atazanavir (ATZ) presents poor brain availability when administered orally, which poses a major hurdle in its use as an effective therapy for the management of NeuroAIDS. The utilization of nanostructured lipid carriers (NLCs) in conjunction with the premeditated use of excipients can be a potential approach for overcoming the limited ATZ brain delivery. Methods: ATZ-loaded NLC was formulated using the quality by design-enabled approach and further optimized by employing the Box–Behnken design. The optimized nanoformulation was then characterized for several in vitro and in vivo assessments. Results: The optimized NLC showed small particle size of 227.6 ± 5.4 nm, high entrapment efficiency (71.09% ± 5.84%) and high drug loading capacity (8.12% ± 2.7%). The release pattern was observed to be biphasic exhibiting fast release (60%) during the initial 2 h, then trailed by the sustained release. ATZ-NLC demonstrated a 2.36-fold increase in the cumulative drug permeated across the rat intestine as compared to suspension. Pharmacokinetic studies revealed 2.75-folds greater Cmax in the brain and 4-fold improvement in brain bioavailability signifying the superiority of NLC formulation over drug suspension. Conclusion: Thus, NLC could be a promising avenue for encapsulating hydrophobic drugs and delivering it to their target site. The results suggested that increase in bioavailability and brain-targeted delivery by NLC, in all plausibility, help in improving the therapeutic prospects of atazanavir.


Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 210 ◽  
Author(s):  
Jeand Baloch ◽  
Muhammad Farhan Sohail ◽  
Hafiz Shaib Sarwar ◽  
Maria Hassan Kiani ◽  
Gul Majid Khan ◽  
...  

Background and Objectives: Lipid-based self-nanoemulsifying drug delivery systems (SNEDDS) have resurged the eminence of nanoemulsions by modest adjustments and offer many valuable opportunities in drug delivery. Chlorpromazine, an antipsychotic agent with poor aqueous solubility—with extensive first-pass metabolism—can be a suitable candidate for the development of SNEDDS. The current study was designed to develop triglyceride-based SNEDDS of chlorpromazine to achieve improved solubility, stability, and oral bioavailability. Materials and Methods: Fifteen SNEDDS formulations of each short, medium, and long chain, triglycerides were synthesized and characterized to achieve optimized formulation. The optimized formulation was characterized for several in vitro and in vivo parameters. Results: Particle size, zeta potential, and drug loading of the optimized SNEDDS (LCT14) were found to be 178 ± 16, −21.4, and 85.5%, respectively. Long chain triglyceride (LCT14) showed a 1.5-fold increased elimination half-life (p < 0.01), up to 6-fold increased oral bioavailability, and 1.7-fold decreased plasma clearance rate (p < 0.01) compared to a drug suspension. Conclusion: The findings suggest that SNEDDS based on long-chain triglycerides (LCT14) formulations seem to be a promising alternative for improving the oral bioavailability of chlorpromazine.


Author(s):  
S Srikanth Reddy ◽  
G Suresh

The current research is aimed at developing liquid self-nanoemulsifying drug delivery system (liquid-SNEDDS) of Manidipine for enhanced solubility and oral bioavailability. The Manidipine SNEDDS are formulated with excipients comprising of Capmul MCM (oil phase), Transcutol P (surfactant) Lutrol L 300 as co-surfactant. The prepared fifteen formulations of Manidipine SNEDDS analysed for emulsification time, percentage transmittance, particle size, in vitro drug release, and stability studies. In vivo pharmacokinetic studies of the optimized formulation were carried out in Wistar rats in comparison with control (pure drug). The morphology of Manidipine SNEDDS indicates spherical shape with uniform particle distribution. The percentage drug release from optimized formulation F14 is 98.24 ± 5.14%. The particle size F14 formulation was 22.4 nm and Z-Average 23.3 nm. The PDI and zeta potential of Manidipine SNEDDS optimized formulation (F14) were 0.313 and-5.1mV respectively. From in vivo bioavailability data the optimized formulation exhibited a significantly greater Cmax and Tmax of the SNEDDS was found to be 3.42 ± 0.46ng/ml and 2.00 ± 0.05 h respectively. AUC0-∞ infinity for formulation was significantly higher (11.25 ± 3.45 ng.h/ml) than pure drug (7.45 ± 2.24ng. h/ml). Hence a potential SNEDDS formulation of Manidipine developed with enhanced solubility and bioavailability.


2013 ◽  
Vol 14 (2) ◽  
pp. 2862-2874 ◽  
Author(s):  
Feng-Yun Huang ◽  
Wan-Jou Chen ◽  
Wan-Yu Lee ◽  
Su-Tang Lo ◽  
Te-Wei Lee ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


Author(s):  
Thu Hang Lai ◽  
Magali Toussaint ◽  
Rodrigo Teodoro ◽  
Sladjana Dukić-Stefanović ◽  
Daniel Gündel ◽  
...  

Abstract Purpose The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. Methods [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. Results [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72–180 GBq/μmol. Autoradiography proved A2A receptor–specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 μg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. Conclusions The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document