scholarly journals Intracellular Reduction-Responsive Molecular Targeted Nanomedicine for Hepatocellular Carcinoma Therapy

2022 ◽  
Vol 12 ◽  
Author(s):  
Lei Ding ◽  
Ping Zhang ◽  
Xu Huang ◽  
Kunmeng Yang ◽  
Xingkai Liu ◽  
...  

The stimuli-responsive polymer-based platform for controlled drug delivery has gained increasing attention in treating hepatocellular carcinoma (HCC) owing to the fascinating biocompatibility and biodegradability, improved antitumor efficacy, and negligible side effects recently. Herein, a disulfide bond-contained polypeptide nanogel, methoxy poly(ethylene glycol)−poly(l-phenylalanine-co-l-cystine) [mPEG−P(LP-co-LC)] nanogel, which could be responsive to the intracellular reduction microenvironments, was developed to deliver lenvatinib (LEN), an inhibitor of multiple receptor tyrosine kinases, for HCC therapy. The lenvatinib-loaded nanogel (NG/LEN) displayed concise drug delivery under the stimulus of glutathione in the cancer cells. Furthermore, the intracellular reduction-responsive nanomedicine NG/LEN showed excellent antitumor effect and almost no side effects toward both subcutaneous and orthotopic HCC tumor-allografted mice in comparison to free drug. The excellent tumor-inhibition efficacy with negligible side effects demonstrated the potential of NG/LEN for clinical molecular targeted therapy of gastrointestinal carcinoma in the future.

2011 ◽  
Vol 181-182 ◽  
pp. 88-91 ◽  
Author(s):  
Xin De Tang ◽  
Ye Chen ◽  
Fa Qi Yu ◽  
Mei Shan Pei

Stimuli-responsive water-soluble and amphiphilic polymers have attracted much attention because their micelles can be produced or destroyed by changing the temperatute, pH, ionic strength, and solvent polarity. In this work, a triply hydrophilic block copolymer of poly (ethylene glycol) and poly (methacrylic acid-co-dimethylamine ethyl methacrylate) [PEO-P(MAA-co-DMAEMA)] was synthesized and characterized. The copolymer system is believed to have the potential for drug delivery applications due to the biocompatibility of MAA and DMAEMA.


2019 ◽  
Vol 14 (3) ◽  
pp. 280-291 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Batool Hashemi-Beni ◽  
Mohsen Minaiyan ◽  
Saeedeh Enteshari

Background: Due to the low water solubility of Docetaxel (DTX), it is formulated with ethanol and Tween 80 with lots of side effects. For this reason, special attention has been paid to formulate it in new drug nano-carriers. Objective: The goal of this study was to evaluate the safety, antitumor activity and tissue distribution of the novel synthesized Raloxifene (RA) targeted polymeric micelles. Methods: DTX-loaded RA-targeted polymeric micelles composed of poly(styrene-maleic acid)- poly(amide-ether-ester-imide)-poly(ethylene glycol) (SMA-PAEE-PEG) were prepared and their antitumor activity was studied in MC4-L2 tumor-bearing mice compared with non-targeted micelles and free DTX. Safety of the micelles was studied by Hematoxylin and Eosin (H&E) staining of tumors and major organs of the mice. The drug accumulation in the tumor and major organs was measured by HPLC method. Results: The results showed better tumor growth inhibition and increased survival of mice treated with DTX-loaded in targeted micelles compared to the non-targeted micelles and free DTX. Histopathological studies, H&E staining of tumors and immunohistochemical examination showed the potential of DTX-loaded RA-targeted micelles to inhibit tumor cells proliferation. The higher accumulation of the DTX in the tumor tissue after injection of the micelles compared to the free DTX may indicate the higher uptake of the targeted micelles by the G-Protein-Coupled Estrogen Receptors (GPER). Conclusion: The results indicate that RA-conjugated polymeric micelles may be a strong and effective drug delivery system for DTX therapy and uptake of the drug into tumor cells, and overcome the disadvantages and side effects of conventional DTX.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24142-24153
Author(s):  
Andreea S. Voda ◽  
Kevin Magniez ◽  
Nisa V. Salim ◽  
Cynthia Wong ◽  
Qipeng Guo

We report for the first time the use of Nα-Boc-l-tryptophan for the synthesis of amphiphilic BAB triblock copolymers for potential drug delivery applications.


Sign in / Sign up

Export Citation Format

Share Document